Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information

[1]  Andrei Zinovyev,et al.  Computational Systems Biology of Cancer , 2020 .

[2]  Nengjun Yi,et al.  BhGLM: Bayesian hierarchical GLMs and survival models, with applications to genomics and epidemiology , 2018, Bioinform..

[3]  Nengjun Yi,et al.  Group spike‐and‐slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway information , 2018, Bioinform..

[4]  E. George,et al.  The Spike-and-Slab LASSO , 2018 .

[5]  Jiancheng Tu,et al.  The associations between CYP24A1 polymorphisms and cancer susceptibility: A meta-analysis and trial sequential analysis. , 2017, Pathology, research and practice.

[6]  Yongdai Kim,et al.  A doubly sparse approach for group variable selection , 2017 .

[7]  Nengjun Yi,et al.  The spike‐and‐slab lasso Cox model for survival prediction and associated genes detection , 2017, Bioinform..

[8]  Jia-Zi Shi,et al.  KRT8 upregulation promotes tumor metastasis and is predictive of a poor prognosis in clear cell renal cell carcinoma. , 2017, Oncotarget.

[9]  Y. Ni,et al.  High KRT8 expression promotes tumor progression and metastasis of gastric cancer , 2017, Cancer science.

[10]  Wenwen Yin,et al.  Elevated E2F7 expression predicts poor prognosis in human patients with gliomas , 2016, Journal of Clinical Neuroscience.

[11]  Xinyan Zhang,et al.  The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection , 2016, Genetics.

[12]  Yaohui Zeng,et al.  Overlapping Group Logistic Regression with Applications to Genetic Pathway Selection , 2015, Cancer informatics.

[13]  Yujie Liu,et al.  E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter , 2015, Oncotarget.

[14]  Patrick Breheny,et al.  The group exponential lasso for bi‐level variable selection , 2015, Biometrics.

[15]  Li Jia,et al.  Germline HABP2 Mutation Causing Familial Nonmedullary Thyroid Cancer. , 2015, The New England journal of medicine.

[16]  A. Vargas,et al.  RacGAP1 Is a Novel Downstream Effector of E2F7-Dependent Resistance to Doxorubicin and Is Prognostic for Overall Survival in Squamous Cell Carcinoma , 2015, Molecular Cancer Therapeutics.

[17]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[18]  Qing Zhao,et al.  Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA , 2015, Briefings Bioinform..

[19]  J. Ogutu,et al.  Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD , 2014, BMC Proceedings.

[20]  Adam A. Margolin,et al.  Assessing the clinical utility of cancer genomic and proteomic data across tumor types , 2014, Nature Biotechnology.

[21]  Veronika Rockova,et al.  EMVS: The EM Approach to Bayesian Variable Selection , 2014 .

[22]  J. Kent Contribution to the Discussion of the Paper Geodesic Monte Carlo on Embedded Manifolds , 2014 .

[23]  Noah Simon,et al.  A Sparse-Group Lasso , 2013 .

[24]  Baolin Wu,et al.  Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment , 2013, PLoS Comput. Biol..

[25]  Y. Teo,et al.  Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts , 2013, PLoS genetics.

[26]  Insuk Sohn,et al.  Predictive Modeling Using a Somatic Mutational Profile in Ovarian High Grade Serous Carcinoma , 2013, PloS one.

[27]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[28]  Jian Huang,et al.  A Selective Review of Group Selection in High-Dimensional Models. , 2012, Statistical science : a review journal of the Institute of Mathematical Statistics.

[29]  Giovanni Montana,et al.  Statistical Applications in Genetics and Molecular Biology Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps , 2012 .

[30]  H. Putter,et al.  Dynamic Prediction in Clinical Survival Analysis , 2011 .

[31]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[32]  Ji Zhu,et al.  Group variable selection via a hierarchical lasso and its oracle property , 2010, 1006.2871.

[33]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[34]  R. Tibshirani,et al.  A note on the group lasso and a sparse group lasso , 2010, 1001.0736.

[35]  P. Zhao,et al.  The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.

[36]  Jian Huang,et al.  Penalized methods for bi-level variable selection. , 2009, Statistics and its interface.

[37]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[38]  Cun-Hui Zhang,et al.  A group bridge approach for variable selection , 2009, Biometrika.

[39]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[40]  Giancarlo Mauri,et al.  Biowep: a workflow enactment portal for bioinformatics applications , 2007, BMC Bioinformatics.

[41]  Emmanuel Barillot,et al.  Classification of microarray data using gene networks , 2007, BMC Bioinformatics.

[42]  L. V. van't Veer,et al.  Cross‐validated Cox regression on microarray gene expression data , 2006, Statistics in medicine.

[43]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[44]  Hongzhe Li,et al.  Statistical Applications in Genetics and Molecular Biology An additive genetic gamma frailty model for two-locus linkage analysis using sibship age of onset data , 2011 .

[45]  M. May Bayesian Survival Analysis. , 2002 .

[46]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[47]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[48]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[49]  B. Efron The Efficiency of Cox's Likelihood Function for Censored Data , 1977 .

[50]  N. Breslow Covariance analysis of censored survival data. , 1974, Biometrics.

[51]  汤在祥 Group spike-and-slab lasso generalized linear models for disease prediction and associated genes detection by incorporating pathway , 2017 .

[52]  Veronika Rockova,et al.  Bayesian Penalty Mixing: The Case of a Non-separable Penalty , 2016 .

[53]  Pang Du,et al.  Variable selection in linear models , 2014 .

[54]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[55]  Cun-Hui Zhang PENALIZED LINEAR UNBIASED SELECTION , 2007 .

[56]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[57]  R. Tibshirani,et al.  Statistical Applications in Genetics and Molecular Biology Pre-validation and inference in microarrays , 2011 .

[58]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[59]  M. Pagano,et al.  Survival analysis. , 1996, Nutrition.

[60]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[61]  D. Cox Regression Models and Life-Tables , 1972 .