Streamline upwind numerical simulation of two-dimensional confined impinging slot jets

Abstract In the present paper, flow and heat transfer characteristics of confined impinging slot jets have been numerically investigated using a SIMPLE-based segregated streamline upwind Petrov–Galerkin finite element method. For laminar jets, it is shown that the skin friction coefficient approaches the grid-independent Galerkin solution and that the present simulation induces negligible false diffusion in the flow field. For turbulent jets, the k–ω turbulence model is adopted. The streamwise mean velocity and the heat transfer coefficient respectively agree very well with existing experimental data within limited ranges of parameters.

[1]  Vijay Modi,et al.  High Schmidt mass transfer in a laminar impinging slot jet flow , 2000 .

[2]  Robert Gardon,et al.  Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets , 1966 .

[3]  Y. H. Hung,et al.  Heat transfer behaviors of a confined slot jet impingement , 1997 .

[4]  J. Masliyah,et al.  Mass transfer due to a confined laminar impinging two-dimensional jet , 1984 .

[5]  K. Hoffmann,et al.  Computational Fluid Dynamics for Engineers , 1989 .

[6]  C. Y. Soong,et al.  NUMERICAL INVESTIGATION OF HEAT TRANSFER UNDER CONFINED IMPINGING TURBULENT SLOT JETS , 1999 .

[7]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[8]  Giovanni Maria Carlomagno,et al.  Azimuthal instability in an impinging jet: adiabatic wall temperature distribution , 1995 .

[9]  Shin-ichi Satake,et al.  Direct numerical simulation of an impinging jet into parallel disks , 1998 .

[10]  Arun S. Mujumdar,et al.  Numerical Prediction of the Flow Field and Impingement Heat Transfer Caused by a Laminar Slot Jet , 1976 .

[11]  Masud Behnia,et al.  Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate , 1998 .

[12]  J. Yoo,et al.  Time-accurate computation of unsteady free surface flows using an ALE-segregated equal-order FEM , 2000 .

[13]  Tim Craft,et al.  Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models , 1993 .

[14]  V. Modi,et al.  Mass transfer in turbulent impinging slot jets , 1999 .

[15]  P. Durbin SEPARATED FLOW COMPUTATIONS WITH THE K-E-V2 MODEL , 1995 .

[16]  D. Wilcox Turbulence modeling for CFD , 1993 .

[17]  Dennis Cooper,et al.  Impinging jet studies for turbulence model assessment—I. Flow-field experiments , 1993 .

[18]  S. Ashforth-Frost,et al.  Velocity and Turbulence Characteristics of a Semiconfined Orthogonally Impinging Slot Jet , 1997 .

[19]  Richard C. Flagan,et al.  The wall shear stress produced by the normal impingement of a jet on a flat surface , 2000, Journal of Fluid Mechanics.

[20]  B. W. Webb,et al.  Air jet impingement heat transfer at low nozzle-plate spacings , 1994 .

[21]  R. J. Schnipke,et al.  An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes , 1986 .

[22]  Laszlo Fuchs,et al.  LARGE EDDY SIMULATIONS OF A FORCED SEMICONFINED CIRCULAR IMPINGING JET , 1998 .

[23]  High Schmidt mass transfer in a turbulent impinging slot–jet flow , 2001 .

[24]  Andrew Pollard,et al.  Heat transfer in separated and impinging turbulent flows , 1996 .

[25]  A. Günther,et al.  Turbulent flow in a channel at a low Reynolds number , 1998 .

[26]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[27]  J. Yoo,et al.  STREAMLINE UPWIND SCHEME FOR THE SEGREGATED FORMULATION OF THE NAVIER-STOKES EQUATION , 1994 .