Gaussian Behavior in Generalized Zeckendorf Decompositions

A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum of nonconsecutive Fibonacci numbers \(\{F_{n}\}_{n=1}^{\infty }\); Lekkerkerker proved that the average number of summands for integers in [F n , F n+1) is \(n/(\varphi ^{2} + 1)\), with φ the golden mean. Interestingly, the higher moments seem to have been ignored. We discuss the proof that the distribution of the number of summands converges to a Gaussian as n → ∞, and comment on generalizations to related decompositions. For example, every integer can be written uniquely as a sum of the ± F n ’s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3). The distribution of the numbers of positive and negative summands converges to a bivariate normal with computable, negative correlation, namely \(-(21 - 2\varphi )/(29 + 2\varphi ) \approx -0.551058\).

[1]  Steven J. Miller,et al.  From Fibonacci numbers to central limit type theorems , 2010, J. Comb. Theory A.

[2]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers With Applications , 2018 .

[3]  Robert F. Tichy,et al.  Corrigendum to “generalized Zeckendorf expansions” , 1994 .

[4]  Michael Drmota,et al.  The distribution of the sum-of-digits function , 1998 .

[5]  Edward B. Burger,et al.  A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers , 2012 .

[6]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers with Applications: Koshy/Fibonacci , 2001 .

[7]  Robert F. Tichy,et al.  Contributions to digit expansions with respect to linear recurrences , 1990 .

[8]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[9]  Melvyn B. Nathanson,et al.  Additive Number Theory , 1996 .

[10]  Steven J. Miller,et al.  The Average Gap Distribution for Generalized Zeckendorf Decompositions , 2012, The Fibonacci Quarterly.

[11]  Hannah Alpert,et al.  Differences of Multiple Fibonacci Numbers , 2009 .

[12]  Mario Lamberger,et al.  Distribution properties of digital expansions arising from linear recurrences , 2003 .

[13]  Steven J. Miller,et al.  On the number of summands in Zeckendorf decompositions , 2010, 1008.3204.

[14]  D. E. Daykin Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers , 1960 .

[15]  Wolfgang Steiner Parry expansions of polynomial sequences. , 2002 .

[16]  Melvyn B. Nathanson,et al.  Additive Number Theory The Classical Bases , 1996 .

[17]  Steven J. Miller,et al.  An Invitation to Modern Number Theory , 2020 .

[18]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[19]  D. J. Uherka,et al.  On the Continuous Dependence of the Roots of a Polynomial on its Coefficients , 1977 .

[20]  C. G. Lekkerkerker,et al.  Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .

[21]  Robert F. Tichy,et al.  Generalized Zeckendorf expansions , 1994 .