Mid-infrared semiconductor heterostructure lasers for gas sensing applications

An overview of the three competing mid-infrared semiconductor laser approaches, being diode, quantum cascade and interband cascade laser designs, is given. Limiting factors as well as unique possibilities of each approach are discussed. Several designs of distributed feedback structures for single-mode laser operation are presented, which is an important prerequisite for gas-sensing applications. The analysis of current state-of-the-art device data allows suggestions with respect to suitable fields of applications.

[1]  Rolf Aidam,et al.  onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ∼4.6 μm) based on a slightly diagonal active region design , 2008 .

[2]  William W. Bewley,et al.  Mid-infrared interband cascade lasers operating at ambient temperatures , 2009 .

[3]  Sven Höfling,et al.  Continuous wave single mode operation of GaInAsSb∕GaSb quantum well lasers emitting beyond 3μm , 2008 .

[4]  Rui Q. Yang,et al.  Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .

[5]  M. Weyers,et al.  12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells , 2001 .

[6]  A. Krysa,et al.  InP-based Quantum Cascade Distributed Feedback Lasers with Deeply Etched Lateral Gratings , 2006, 2006 IEEE 20th International Semiconductor Laser Conference, 2006. Conference Digest..

[7]  Luke R. Wilson,et al.  InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm , 2007 .

[8]  Catherine Caneau,et al.  High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ∼5.2 μm , 2009 .

[9]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[10]  Federico Capasso,et al.  Dependence of the device performance on the number of stages in quantum-cascade lasers , 1999 .

[11]  Scott W. Corzine,et al.  High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .

[12]  Manijeh Razeghi,et al.  Room-temperature continuous-wave operation of quantum-cascade lasers at λ∼4μm , 2006 .

[13]  M. B. Frish,et al.  The next generation of TDLAS analyzers , 2007, SPIE Optics East.

[14]  Alexei N. Baranov,et al.  InAs-based quantum-cascade lasers , 2008, SPIE OPTO.

[15]  Andrey B. Krysa,et al.  λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers , 2009 .

[16]  Hao Lee,et al.  4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes , 1997 .

[17]  William W. Bewley,et al.  Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .

[18]  Mykhaylo P. Semtsiv,et al.  Short-wavelength (λ≈3.05μm) InP-based strain-compensated quantum-cascade laser , 2006 .

[19]  Federico Capasso,et al.  High-power λ≈8 μm quantum cascade lasers with near optimum performance , 1998 .

[20]  Christopher L. Felix,et al.  Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .

[21]  C. Lauer,et al.  Room-temperature operation of 3.26μm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers , 2005 .

[22]  Yves Rouillard,et al.  Tunable-diode-laser spectroscopy of C(2)H(2) using a 3.03 microm GaInAsSb/AlGaInAsSb distributed-feedback laser. , 2009, Optics letters.

[23]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[24]  Rui Q. Yang,et al.  Continuous-wave operation of distributed feedback interband cascade lasers , 2004 .

[25]  Herbert Kroemer,et al.  Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.

[26]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .

[27]  Peter Werle,et al.  A review of recent advances in semiconductor laser based gas monitors , 1998 .

[28]  Gaetano Scamarcio,et al.  High-performance superlattice quantum cascade lasers , 1999 .

[29]  Manijeh Razeghi,et al.  Temperature dependent characteristics of λ∼3.8μm room-temperature continuous-wave quantum-cascade lasers , 2006 .

[30]  William W. Bewley,et al.  Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature , 2009 .

[31]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[32]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[33]  Rui Q. Yang,et al.  High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .

[34]  D. Sivco,et al.  Mid-infrared quantum cascade lasers , 1994, Proceedings of LEOS'94.

[35]  M. Takeshima Effect of Auger recombination on laser operation in Ga1−xAlxAs , 1985 .

[36]  Zhaobing Tian,et al.  Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[37]  Johannes Koeth,et al.  Laser Diodes for Gas Sensing Emitting at 3.06 $\mu$m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[38]  Manijeh Razeghi,et al.  High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .

[39]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[40]  H. Choi,et al.  High‐power multiple‐quantum‐well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density , 1992 .

[41]  Manijeh Razeghi,et al.  Quantum cascade lasers that emit more light than heat , 2010 .

[42]  Sven Höfling,et al.  Emission wavelength tuning of interband cascade lasers in the 3–4 μm spectral range , 2009 .

[43]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[44]  Pedro Barrios,et al.  Single-mode 2.4 μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing , 2009 .

[45]  E. Gornik,et al.  Analysis of TM-polarized DFB laser structures with metal surface gratings , 2000, IEEE Journal of Quantum Electronics.

[46]  Chenglu Lin,et al.  Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers , 2004 .

[47]  Erich P. Ippen,et al.  Nonlinear carrier dynamics in GaxIn1−xAsyP1−y compounds , 1984 .

[48]  Dmitry G. Revin,et al.  InGaAs∕AlAsSb quantum cascade lasers , 2004 .

[49]  K. Nakahara,et al.  40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-$\mu$m InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers , 2007, IEEE Photonics Technology Letters.

[50]  Roland Teissier,et al.  InAs∕AlSb quantum cascade lasers emitting at 2.75–2.97μm , 2007 .

[51]  Roland Teissier,et al.  Quantum cascade lasers emitting near 2.6 μm , 2010 .

[52]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[53]  D. Chow,et al.  Demonstration of 3.5 mu m Ga/sub 1-x/In/sub x/Sb/InAs superlattice diode laser , 1995 .

[54]  A. Krysa,et al.  Room temperature λ ~ 3.3 μm InP-based inGaAs/AIAs(Sb) quantum cascade lasers , 2010 .

[55]  Carlo Sirtori,et al.  Distributed feedback quantum cascade lasers , 1997 .

[56]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[57]  A. Krysa,et al.  High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K , 2010 .

[58]  R. Martinelli,et al.  2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers , 1999, IEEE Photonics Technology Letters.

[59]  Markus Ortsiefer,et al.  Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm , 2007 .

[60]  Manijeh Razeghi,et al.  High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼4.8μm , 2005 .

[61]  Wei Zhang,et al.  High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm , 2007 .

[62]  M. Semtsiv,et al.  Impact of doping on the performance of short-wavelength InP-based quantum-cascade lasers , 2008 .

[63]  Johann Peter Reithmaier,et al.  Lateral coupling – a material independent way to complex coupled DFB lasers , 2001 .

[64]  Marc T. Kelemen,et al.  GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power , 2006 .