Mid-infrared semiconductor heterostructure lasers for gas sensing applications
暂无分享,去创建一个
Sven Höfling | Alfred Forchel | Lukas Worschech | Martin Kamp | M. Kamp | S. Höfling | L. Worschech | A. Forchel | T Lehnhardt | T. Lehnhardt | K. Rößner | Adam Q. Bauer | K. Rößner | A. Bauer
[1] Rolf Aidam,et al. onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ∼4.6 μm) based on a slightly diagonal active region design , 2008 .
[2] William W. Bewley,et al. Mid-infrared interband cascade lasers operating at ambient temperatures , 2009 .
[3] Sven Höfling,et al. Continuous wave single mode operation of GaInAsSb∕GaSb quantum well lasers emitting beyond 3μm , 2008 .
[4] Rui Q. Yang,et al. Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .
[5] M. Weyers,et al. 12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells , 2001 .
[6] A. Krysa,et al. InP-based Quantum Cascade Distributed Feedback Lasers with Deeply Etched Lateral Gratings , 2006, 2006 IEEE 20th International Semiconductor Laser Conference, 2006. Conference Digest..
[7] Luke R. Wilson,et al. InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm , 2007 .
[8] Catherine Caneau,et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ∼5.2 μm , 2009 .
[9] Herbert Kroemer,et al. A proposed class of hetero-junction injection lasers , 1963 .
[10] Federico Capasso,et al. Dependence of the device performance on the number of stages in quantum-cascade lasers , 1999 .
[11] Scott W. Corzine,et al. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .
[12] Manijeh Razeghi,et al. Room-temperature continuous-wave operation of quantum-cascade lasers at λ∼4μm , 2006 .
[13] M. B. Frish,et al. The next generation of TDLAS analyzers , 2007, SPIE Optics East.
[14] Alexei N. Baranov,et al. InAs-based quantum-cascade lasers , 2008, SPIE OPTO.
[15] Andrey B. Krysa,et al. λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers , 2009 .
[16] Hao Lee,et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes , 1997 .
[17] William W. Bewley,et al. Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .
[18] Mykhaylo P. Semtsiv,et al. Short-wavelength (λ≈3.05μm) InP-based strain-compensated quantum-cascade laser , 2006 .
[19] Federico Capasso,et al. High-power λ≈8 μm quantum cascade lasers with near optimum performance , 1998 .
[20] Christopher L. Felix,et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .
[21] C. Lauer,et al. Room-temperature operation of 3.26μm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers , 2005 .
[22] Yves Rouillard,et al. Tunable-diode-laser spectroscopy of C(2)H(2) using a 3.03 microm GaInAsSb/AlGaInAsSb distributed-feedback laser. , 2009, Optics letters.
[23] L. Coldren,et al. Diode Lasers and Photonic Integrated Circuits , 1995 .
[24] Rui Q. Yang,et al. Continuous-wave operation of distributed feedback interband cascade lasers , 2004 .
[25] Herbert Kroemer,et al. Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.
[26] Manijeh Razeghi,et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .
[27] Peter Werle,et al. A review of recent advances in semiconductor laser based gas monitors , 1998 .
[28] Gaetano Scamarcio,et al. High-performance superlattice quantum cascade lasers , 1999 .
[29] Manijeh Razeghi,et al. Temperature dependent characteristics of λ∼3.8μm room-temperature continuous-wave quantum-cascade lasers , 2006 .
[30] William W. Bewley,et al. Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature , 2009 .
[31] J. D. Kingsley,et al. Coherent Light Emission From GaAs Junctions , 1962 .
[32] Mattias Beck,et al. Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.
[33] Rui Q. Yang,et al. High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .
[34] D. Sivco,et al. Mid-infrared quantum cascade lasers , 1994, Proceedings of LEOS'94.
[35] M. Takeshima. Effect of Auger recombination on laser operation in Ga1−xAlxAs , 1985 .
[36] Zhaobing Tian,et al. Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$ m , 2009, IEEE Photonics Technology Letters.
[37] Johannes Koeth,et al. Laser Diodes for Gas Sensing Emitting at 3.06 $\mu$m at Room Temperature , 2010, IEEE Photonics Technology Letters.
[38] Manijeh Razeghi,et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .
[39] W. Dumke,et al. STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .
[40] H. Choi,et al. High‐power multiple‐quantum‐well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density , 1992 .
[41] Manijeh Razeghi,et al. Quantum cascade lasers that emit more light than heat , 2010 .
[42] Sven Höfling,et al. Emission wavelength tuning of interband cascade lasers in the 3–4 μm spectral range , 2009 .
[43] N. Holonyak,et al. COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .
[44] Pedro Barrios,et al. Single-mode 2.4 μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing , 2009 .
[45] E. Gornik,et al. Analysis of TM-polarized DFB laser structures with metal surface gratings , 2000, IEEE Journal of Quantum Electronics.
[46] Chenglu Lin,et al. Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers , 2004 .
[47] Erich P. Ippen,et al. Nonlinear carrier dynamics in GaxIn1−xAsyP1−y compounds , 1984 .
[48] Dmitry G. Revin,et al. InGaAs∕AlAsSb quantum cascade lasers , 2004 .
[49] K. Nakahara,et al. 40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-$\mu$m InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers , 2007, IEEE Photonics Technology Letters.
[50] Roland Teissier,et al. InAs∕AlSb quantum cascade lasers emitting at 2.75–2.97μm , 2007 .
[51] Roland Teissier,et al. Quantum cascade lasers emitting near 2.6 μm , 2010 .
[52] David A. Ritchie,et al. THz and sub‐THz quantum cascade lasers , 2009 .
[53] D. Chow,et al. Demonstration of 3.5 mu m Ga/sub 1-x/In/sub x/Sb/InAs superlattice diode laser , 1995 .
[54] A. Krysa,et al. Room temperature λ ~ 3.3 μm InP-based inGaAs/AIAs(Sb) quantum cascade lasers , 2010 .
[55] Carlo Sirtori,et al. Distributed feedback quantum cascade lasers , 1997 .
[56] Rui Q. Yang. Infrared laser based on intersubband transitions in quantum wells , 1995 .
[57] A. Krysa,et al. High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K , 2010 .
[58] R. Martinelli,et al. 2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers , 1999, IEEE Photonics Technology Letters.
[59] Markus Ortsiefer,et al. Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm , 2007 .
[60] Manijeh Razeghi,et al. High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼4.8μm , 2005 .
[61] Wei Zhang,et al. High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm , 2007 .
[62] M. Semtsiv,et al. Impact of doping on the performance of short-wavelength InP-based quantum-cascade lasers , 2008 .
[63] Johann Peter Reithmaier,et al. Lateral coupling – a material independent way to complex coupled DFB lasers , 2001 .
[64] Marc T. Kelemen,et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power , 2006 .