Venous identity requires BMP signalling through ALK3

[1]  Ron Edgar,et al.  NCBI gene expression and hybridization array data repository , 2020 .

[2]  Stephan C F Neuhauss,et al.  Guidelines for morpholino use in zebrafish , 2017, PLoS genetics.

[3]  Michael D. Wilson,et al.  Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network , 2017, Development.

[4]  Diana C. Chong,et al.  Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6 , 2016, Nature Communications.

[5]  S. P. Herbert,et al.  MEF2 transcription factors are key regulators of sprouting angiogenesis , 2016, Genes & development.

[6]  L. Zhu,et al.  Vegfa signals through ERK to promote angiogenesis, but not artery differentiation , 2016, Development.

[7]  L. Umans,et al.  BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks , 2016, BMC Developmental Biology.

[8]  A. Hata,et al.  TGF-β Signaling from Receptors to Smads. , 2016, Cold Spring Harbor perspectives in biology.

[9]  Gordon C Jayson,et al.  Antiangiogenic therapy in oncology: current status and future directions , 2016, The Lancet.

[10]  C. Hill Transcriptional Control by the SMADs. , 2016, Cold Spring Harbor perspectives in biology.

[11]  K. Lyons,et al.  Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors , 2016, Scientific Reports.

[12]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[13]  Minhong Yan,et al.  EphB4 forward signalling regulates lymphatic valve development , 2015, Nature Communications.

[14]  Arndt F. Siekmann,et al.  Arteries are formed by vein-derived endothelial tip cells , 2014, Nature Communications.

[15]  Suk-Won Jin,et al.  Diversity is in my veins: role of bone morphogenetic protein signaling during venous morphogenesis in zebrafish illustrates the heterogeneity within endothelial cells. , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[16]  Jun-Dae Kim,et al.  Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish , 2014, Molecules and cells.

[17]  O. Cleaver,et al.  Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos , 2014, Circulation research.

[18]  Joshua D. Wythe,et al.  ETS factors regulate Vegf-dependent arterial specification. , 2013, Developmental cell.

[19]  Ke Liu,et al.  Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development , 2013, Proceedings of the National Academy of Sciences.

[20]  Dean Y. Li,et al.  Arteriovenous malformations and other vascular malformation syndromes. , 2013, Cold Spring Harbor perspectives in medicine.

[21]  Karl K. Murphy,et al.  Functional characterization of tissue-specific enhancers in the DLX5/6 locus. , 2012, Human molecular genetics.

[22]  Marcel Mettlen,et al.  Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. , 2012, Developmental cell.

[23]  C. Hill,et al.  Spatial regulation of BMP activity , 2012, FEBS letters.

[24]  S. Karlsson,et al.  Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. , 2012, Blood.

[25]  K. Miyazono,et al.  Genome-wide mechanisms of Smad binding , 2012, Oncogene.

[26]  A. Eichmann,et al.  ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. , 2012, Developmental cell.

[27]  C. Mummery,et al.  Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. , 2012, Developmental cell.

[28]  Jeroen Bakkers,et al.  Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish , 2011, PLoS genetics.

[29]  Diana C. Chong,et al.  Stepwise arteriovenous fate acquisition during mammalian vasculogenesis , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  Shuichi Tsutsumi,et al.  ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif , 2011, Nucleic acids research.

[31]  J. Hao,et al.  Distinct Signaling Pathways Regulate Sprouting Angiogenesis from the Dorsal Aorta and Axial Vein , 2011, Nature Cell Biology.

[32]  Marie-José Goumans,et al.  Signaling by members of the TGF-beta family in vascular morphogenesis and disease. , 2010, Trends in cell biology.

[33]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[34]  Nathaniel D Heintzman,et al.  Finding distal regulatory elements in the human genome. , 2009, Current opinion in genetics & development.

[35]  H. Aburatani,et al.  Promoter‐wide analysis of Smad4 binding sites in human epithelial cells , 2009, Cancer science.

[36]  Shawn C. Little,et al.  BMP heterodimers assemble hetero-type I receptor complexes that pattern the DV axis , 2009, Nature Cell Biology.

[37]  B. Weinstein,et al.  Arterial–Venous Specification During Development , 2009, Circulation Research.

[38]  B. Black,et al.  Transcriptional control of endothelial cell development. , 2009, Developmental Cell.

[39]  R. Adams,et al.  Molecular differentiation and specialization of vascular beds , 2009, Angiogenesis.

[40]  H. Aburatani,et al.  Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling , 2008, Molecular and Cellular Biology.

[41]  C. Mummery,et al.  Real time monitoring of BMP Smads transcriptional activity during mouse development , 2008, Genesis.

[42]  Guson Kang,et al.  Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. , 2008, Genes & development.

[43]  E. Dejana,et al.  Sox18 and Sox7 play redundant roles in vascular development. , 2008, Blood.

[44]  V. Kaartinen,et al.  ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. , 2008, Blood.

[45]  M. Goumans,et al.  Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice , 2007, Journal of Cell Science.

[46]  M. Figueroa,et al.  Smad1 and Smad5 differentially regulate embryonic hematopoiesis. , 2007, Blood.

[47]  M. Tsai,et al.  Artery and vein formation: a tug of war between different forces , 2007, EMBO reports.

[48]  Wenlong Li,et al.  Essential Role of Endothelial Smad4 in Vascular Remodeling and Integrity , 2007, Molecular and Cellular Biology.

[49]  Adam L. Bermange,et al.  Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis , 2007, Development.

[50]  Nathan D. Lawson,et al.  Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries , 2007, Nature.

[51]  Michael R. Green,et al.  Transcriptional regulatory elements in the human genome. , 2006, Annual review of genomics and human genetics.

[52]  C. Deng,et al.  Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation , 2006, Development.

[53]  R. Peterson,et al.  Artery/Vein Specification Is Governed by Opposing Phosphatidylinositol-3 Kinase and MAP Kinase/ERK Signaling , 2006, Current Biology.

[54]  T. Wolfsberg,et al.  DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays , 2006, Nature Methods.

[55]  K. Kawakami Transposon tools and methods in zebrafish , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[56]  J. Epstein,et al.  Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. , 2005, Developmental biology.

[57]  Fu-Jung Lin,et al.  Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity , 2005, Nature.

[58]  M. Gering,et al.  Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. , 2005, Developmental cell.

[59]  B. Black,et al.  Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. , 2004, Developmental biology.

[60]  I. Graef,et al.  A Field of Myocardial-Endocardial NFAT Signaling Underlies Heart Valve Morphogenesis , 2004, Cell.

[61]  Dorian C. Anderson,et al.  Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo , 2004, Development.

[62]  L. Yao,et al.  Derivation of Endothelial Cells from CD34− Umbilical Cord Blood , 2004, Stem cells.

[63]  R. Flavell,et al.  Endothelial Cells Require STAT3 for Protection against Endotoxin-induced Inf lammation , 2003, The Journal of experimental medicine.

[64]  T. Seki,et al.  Arterial Endothelium-Specific Activin Receptor-Like Kinase 1 Expression Suggests Its Role in Arterialization and Vascular Remodeling , 2003, Circulation research.

[65]  Nathan D. Lawson,et al.  Arteries and veins: making a difference with zebrafish , 2002, Nature Reviews Genetics.

[66]  R. Moon,et al.  Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. , 2002, Development.

[67]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[68]  P. ten Dijke,et al.  Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter* , 2002, The Journal of Biological Chemistry.

[69]  D. Srivastava,et al.  A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. , 2000, Development.

[70]  Dean Y. Li,et al.  Arteriovenous malformations in mice lacking activin receptor-like kinase-1 , 2000, Nature Genetics.

[71]  P. Donahoe,et al.  Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Anderson,et al.  Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. , 1999, Molecular cell.

[73]  N. Ueno,et al.  Dual specificity of activin type II receptor ActRIIb in dorso‐ventral patterning during zebrafish embryogenesis , 1999, Development, growth & differentiation.

[74]  M. Kretzschmar,et al.  Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 , 1997, Nature.

[75]  M. Fishman,et al.  Vessel patterning in the embryo of the zebrafish: guidance by notochord. , 1997, Developmental biology.

[76]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[77]  Diana C. Chong,et al.  Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein–Induced Retinal Angiogenesis , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[78]  David J. Arenillas,et al.  a major expansion and update of the open-access database of transcription factor binding profiles , 2015 .

[79]  Fumito Ito,et al.  Current Status and Future Directions , 2013 .

[80]  K. Xia,et al.  Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. , 2010, Genome research.

[81]  K. Miyazono,et al.  Bone morphogenetic protein receptors and signal transduction. , 2010, Journal of biochemistry.

[82]  Marie-José Goumans,et al.  TGF-β signaling in vascular biology and dysfunction , 2009, Cell Research.

[83]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..