Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium

[1]  Jan P. Meier-Kolthoff,et al.  The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota , 2016, Nature Microbiology.

[2]  B. Stecher,et al.  The mouse gut microbiome revisited: From complex diversity to model ecosystems. , 2016, International journal of medical microbiology : IJMM.

[3]  C. Lebrilla,et al.  Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. , 2016, Cell host & microbe.

[4]  T. R. Licht,et al.  A catalog of the mouse gut metagenome , 2015, Nature Biotechnology.

[5]  Jens V. Stein,et al.  The outer mucus layer hosts a distinct intestinal microbial niche , 2015, Nature Communications.

[6]  J. Fox,et al.  The Altered Schaedler Flora: Continued Applications of a Defined Murine Microbial Community. , 2015, ILAR journal.

[7]  P. Rosenstiel,et al.  Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice , 2014, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Ward,et al.  Draft Genome Sequences of the Altered Schaedler Flora, a Defined Bacterial Community from Gnotobiotic Mice , 2014, Genome Announcements.

[9]  A. Bäumler,et al.  Comparative Analysis of Salmonella Genomes Identifies a Metabolic Network for Escalating Growth in the Inflamed Gut , 2014, mBio.

[10]  M. Robinson,et al.  Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. , 2013, Cell host & microbe.

[11]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[12]  B. Weimer,et al.  Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens , 2013, Nature.

[13]  B. Stecher,et al.  Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. , 2013, FEMS microbiology reviews.

[14]  R. Edwards,et al.  Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. , 2013, Cell host & microbe.

[15]  S. Winter,et al.  Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration , 2013, mBio.

[16]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[17]  Jun Wang,et al.  The role of biogeography in shaping diversity of the intestinal microbiota in house mice , 2013, Molecular ecology.

[18]  L. Ursell,et al.  Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor , 2013, Science.

[19]  F. Raymond,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ray Meta: scalable de novo metagenome assembly and profiling , 2012 .

[20]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[21]  Edward C. Uberbacher,et al.  Gene and translation initiation site prediction in metagenomic sequences , 2012, Bioinform..

[22]  E. Pamer,et al.  Antibiotics, microbiota, and immune defense. , 2012, Trends in immunology.

[23]  B. Birren,et al.  The “Most Wanted” Taxa from the Human Microbiome for Whole Genome Sequencing , 2012, PloS one.

[24]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[25]  David A. Relman,et al.  Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota , 2012, Cell.

[26]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[27]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[28]  J. Chun,et al.  Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. , 2012, International journal of systematic and evolutionary microbiology.

[29]  A. K. Hansen,et al.  Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. , 2012, Comparative immunology, microbiology and infectious diseases.

[30]  B. Stecher,et al.  The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response , 2012, Immunological reviews.

[31]  K. Berer,et al.  Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination , 2011, Nature.

[32]  Yongan Zhao,et al.  RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data , 2011, Bioinform..

[33]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system displays antimicrobial properties , 2010, Proceedings of the National Academy of Sciences.

[34]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[35]  C. von Mering,et al.  Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria , 2010, PLoS pathogens.

[36]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[37]  G. Dougan,et al.  Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota , 2007, PLoS biology.

[38]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[39]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[40]  S. Akira,et al.  The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow Salmonella Serovar typhimurium to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms1 , 2005, The Journal of Immunology.

[41]  W. D. de Vos,et al.  Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. , 2004, International journal of systematic and evolutionary microbiology.

[42]  B. Stecher,et al.  Flagella and Chemotaxis Are Required for Efficient Induction of Salmonella enterica Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice , 2004, Infection and Immunity.

[43]  F. Dewhirst,et al.  Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora , 1999, Applied and Environmental Microbiology.

[44]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[45]  R. Freter,et al.  Mechanisms That Control Bacterial Populations in Continuous-Flow Culture Models of Mouse Large Intestinal Flora , 1983, Infection and immunity.

[46]  B. Stocker,et al.  Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines , 1981, Nature.

[47]  R. Freter,et al.  Efficiency of Various Intestinal Bacteria in Assuming Normal Functions of Enteric Flora After Association with Germ-Free Mice , 1970, Infection and immunity.

[48]  R. Freter,et al.  Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. , 1969, Applied microbiology.

[49]  D. Haller,et al.  Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse , 2012, Archives of Microbiology.