Forcing Nonperiodicity with a Single Tile
暂无分享,去创建一个
[1] Robert V. Moody,et al. The Mathematics of Long-Range Aperiodic Order , 1997 .
[2] P. Gummelt,et al. Penrose tilings as coverings of congruent decagons , 1996 .
[3] Chaim Goodman-Strauss,et al. A Small Aperiodic Set of Planar Tiles , 1999, Eur. J. Comb..
[4] Robert L. Berger. The undecidability of the domino problem , 1966 .
[5] Hyeong-Chai Jeong,et al. A simpler approach to Penrose tiling with implications for quasicrystal formation , 1996, Nature.
[6] Michel Dekking,et al. Folds - II. Symmetry disturbed , 1982 .
[7] F. Gähler,et al. The Diffraction Pattern of Self-Similar Tilings , 1997 .
[8] D. P. Di Vincenzo. Quasicrystals: The State of the Art (2nd Edition) , 1999 .
[9] Roger Penrose,et al. Remarks on Tiling: Details of a (1 + ε + ε2)-Aperiodic Set , 1997 .
[10] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[11] C. Janot,et al. Quasicrystals: A Primer , 1992 .
[12] C Godreche. The sphinx: a limit-periodic tiling of the plane , 1989 .
[13] Joshua E. S. Socolar,et al. An aperiodic hexagonal tile , 2010, J. Comb. Theory A.
[14] Chen,et al. Real-space atomic structure of a two-dimensional decagonal quasicrystal. , 1990, Physical review letters.
[15] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[16] Joshua E. S. Socolar,et al. More ways to tile with only one shape polygon , 2007 .
[17] Joshua E. S. Socolar,et al. Hexagonal parquet tilings: k-isohedral monotiles with arbitrarily large k , 2007, 0708.2663.
[18] Jorge Nuno Silva,et al. Mathematical Games , 1959, Nature.