Latent Thermal Energy Storage

The quest toward the development of efficient thermal systems largely depends on energy intake, which has to be conserved at every step of the building design. The growing demand for energy-efficient thermal systems can be improvised through performing active research efforts pertaining to the energy redistribution in buildings. The incessant value-added engineering design of the cooling/heating systems from the scheme inception to the construction of the building structures is vital in distributing and achieving the peak load shaving and energy conservation on a long-term basis. Several systems exist for reducing the peak energy and electricity bills in building envelopes. From this perspective, the thermal energy storage systems offer a wide opportunity for acquiring the energy redistribution and energy savings potential at a more efficient way. In this context, latent thermal energy storage (LTES) systems utilizing phase change materials are a class of thermal storage systems that basically stores and releases thermal energy by virtue of the phase transition phenomenon. Thermal energy (cold or heat) can be stored and retrieved from such heat storage materials effectively by taking advantage of their high latent heat potential. The integration of the LTES systems can collectively contribute for achieving enhanced energy performance in the long term, which would take forward the new and the existing building to be highly energy efficient.

[1]  Joseph Andrew Clarke,et al.  Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r , 2004 .

[2]  André Bontemps,et al.  Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material , 2006 .

[3]  André Bontemps,et al.  Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material , 2006 .

[4]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in concrete walls for energy savings , 2007 .

[5]  Frédéric Kuznik,et al.  A review on phase change materials integrated in building walls , 2011 .

[6]  Javier Neila,et al.  Applications of Phase Change Material in highly energy-efficient houses , 2012 .

[7]  Mohamed Khayet,et al.  Experimental tile with phase change materials (PCM) for building use , 2011 .

[8]  Yat Huang Yau,et al.  A review on cool thermal storage technologies and operating strategies , 2012 .

[9]  S. Kalaiselvam,et al.  Sustainable thermal energy storage technologies for buildings: A review , 2012 .

[10]  M. Medrano,et al.  Thermal energy storage with phase change materials in building envelopes , 2007 .

[11]  Arun S. Mujumdar,et al.  Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES) , 2013 .

[12]  R. Velraj,et al.  Heat transfer enhancement in a latent heat storage system , 1999 .

[13]  Luisa F. Cabeza,et al.  Experimental study of using PCM in brick constructive solutions for passive cooling , 2010 .

[14]  M. Sanchez,et al.  Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content , 2011 .

[15]  R. Velraj,et al.  Effect of double layer phase change material in building roof for year round thermal management , 2008 .

[16]  Xin Wang,et al.  An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating , 2007 .

[17]  Ahmet Sarı,et al.  Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties , 2004 .

[18]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[19]  Luisa F. Cabeza,et al.  Review on phase change materials (PCMs) for cold thermal energy storage applications , 2012 .

[20]  Jianlei Niu,et al.  Performance of cooled-ceiling operating with MPCM slurry , 2009 .

[21]  Joseph Virgone,et al.  Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling , 2009 .

[22]  M. Santamouris,et al.  Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions , 2011 .

[23]  Xin Wang,et al.  Influence of additives on thermal conductivity of shape-stabilized phase change material , 2006 .

[24]  S. C. Kaushik,et al.  Thermal performance of a non-air-conditioned building with PCCM thermal storage wall☆ , 1985 .

[25]  C. E. Dorgan,et al.  ASHRAE's new design guide for cool thermal storage , 1994 .

[26]  H. Weinlaeder,et al.  Monitoring results of an interior sun protection system with integrated latent heat storage , 2011 .

[27]  J. Fukai,et al.  Effect of carbon-fiber brushes on conductive heat transfer in phase change materials , 2002 .

[28]  Peter Schossig,et al.  Micro-encapsulated phase-change materials integrated into construction materials , 2005 .

[29]  Joseph Virgone,et al.  Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation , 2008 .

[30]  D. A. Neeper,et al.  Thermal dynamics of wallboard with latent heat storage , 2000 .

[31]  S. C. Kaushik,et al.  DEVELOPMENT OF PHASE CHANGE MATERIALS BASED MICROENCAPSULATED TECHNOLOGY FOR BUILDINGS: A REVIEW , 2011 .

[32]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[33]  Fu Xiao,et al.  Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review , 2013 .

[34]  M. Rosen,et al.  Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems , 2012 .

[35]  D. W. Etheridge,et al.  Novel ventilation cooling system for reducing air conditioning in buildings.: Part I: testing and theoretical modelling , 2000 .

[36]  André Bontemps,et al.  Realization, test and modelling of honeycomb wallboards containing a Phase Change Material , 2011 .

[37]  Joseph Virgone,et al.  Optimization of a Phase Change Material Wallboard for Building Use , 2008 .

[38]  Uroš Stritih,et al.  Heat transfer enhancement in latent heat thermal storage system for buildings , 2003 .

[39]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[40]  Andreas K. Athienitis,et al.  Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage , 1997 .

[41]  Min Xiao,et al.  Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity , 2002 .

[42]  Jose M. Marin,et al.  Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation , 2011 .

[43]  Victor M. Ferreira,et al.  Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution , 2012 .

[44]  Haifeng Guo,et al.  A new kind of phase change material (PCM) for energy-storing wallboard , 2008 .

[45]  Dariusz Heim,et al.  Isothermal storage of solar energy in building construction , 2010 .

[46]  Uroš Stritih,et al.  Experimental investigation of PCM cold storage , 2009 .

[47]  Paulo Santos,et al.  Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency , 2013 .

[48]  T. K. Stovall,et al.  What are the potential benefits of including latent storage in common wallboard , 1995 .

[49]  Esam M. Alawadhi,et al.  Building roof with conical holes containing PCM to reduce the cooling load: Numerical study , 2011 .

[50]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[51]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part II: cool thermal storage , 1998 .

[52]  Mónica Delgado,et al.  Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications , 2012 .

[53]  Mihai Cruceru,et al.  Novel concept of composite phase change material wall system for year-round thermal energy savings , 2010 .

[54]  Jiangjiang Wang,et al.  Using the fuzzy multi-criteria model to select the optimal cool storage system for air conditioning , 2008 .

[55]  A. Bontemps,et al.  Experimental and modelling study of twin cells with latent heat storage walls , 2011 .

[56]  S. Kalaiselvam,et al.  Energy efficient PCM-based variable air volume air conditioning system for modern buildings , 2010 .

[57]  Jiang Yi,et al.  Modeling and experimental study on an innovative passive cooling system—NVP system , 2003 .

[58]  David Reay,et al.  Novel ventilation system for reducing air conditioning in buildings. Part II: testing of prototype , 2001 .

[59]  Tadahiko Ibamoto,et al.  Research on thermal storage using rock wool phase-change material ceiling board , 2006 .

[60]  Sungwook Hong,et al.  Effects of wallboard design parameters on the thermal storage in buildings , 2011 .

[61]  Yi Jiang,et al.  Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard , 2008 .

[62]  J. Fukai,et al.  Thermal conductivity enhancement of energy storage media using carbon fibers , 2000 .

[63]  K Darkwa,et al.  Dynamics of energy storage in phase change drywall systems , 2005 .