A ] 1 2 N ov 2 00 2 On zeros of polynomials and allied functions satisfying second order differential equations

We shall give bounds on the spacing of zeros of certain functions belonging to the LaguerrePólya class and satisfying a second order linear differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polynomials, which are uniform in all the parameters.

[1]  Xin Li,et al.  Bound on the extreme zeros of orthogonal polynomials , 1992 .

[2]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[3]  “Best possible” upper bounds for the first two positive zeros of the Bessel function J n (x) : the infinite case , 1996 .

[4]  Klaus-Jürgen Förster,et al.  On estimates for the weights in Gaussian quadrature in the ultraspherical case , 1990 .

[5]  W. Burnside Theory of Functions , 1899, Nature.

[6]  Wolfgang Gawronski,et al.  On the limit distributions of the zeros of Jonquiegre polynomials and generalized classical orthogonal polynomials , 1995 .

[7]  Lee Lorch,et al.  “Best possible” upper bounds for the first positive zeros of Bessel functions—the finite part , 1996 .

[8]  W. J. Studden,et al.  Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials , 1994, math/9406224.

[9]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[10]  Ilia Krasikov Bounds for zeros of the Laguerre polynomials , 2003, J. Approx. Theory.

[11]  Árpád Elbert,et al.  On the zeros of Jacobi polynomials , 1994 .

[12]  Helly Aufgaben und Lehrsätze aus der Analysis , 1928 .

[13]  Ilia Krasikov,et al.  Nonnegative Quadratic Forms and Bounds on Orthogonal Polynomials , 2001, J. Approx. Theory.

[14]  H. Hethcote Error Bounds for Asymptotic Approximations of Zeros of Transcendental Functions , 1970 .

[15]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .