Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence

This paper focuses on the numerical analysis of a finite element method with stabilization for the unsteady incompressible Navier–Stokes equations. Incompressibility and convective effects are both stabilized adding an interior penalty term giving L2-control of the jump of the gradient of the approximate solution over the internal faces. Using continuous equal-order finite elements for both velocities and pressures, in a space semi-discretized formulation, we prove convergence of the approximate solution. The error estimates hold irrespective of the Reynolds number, and hence also for the incompressible Euler equations, provided the exact solution is smooth.

[1]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[2]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[3]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[4]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[5]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[6]  P. Oswald,et al.  On a BPX-preconditioner for P1 elements , 1993, Computing.

[7]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[8]  Erik Burman,et al.  A finite element method with edge oriented stabilization for the time-dependent Navier-Stokes equations: space discretization and convergence , 2005 .

[9]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[10]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[11]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[12]  Jean-Luc Guermond,et al.  MATHEMATICAL ANALYSIS OF A SPECTRAL HYPERVISCOSITY LES MODEL FOR THE SIMULATION OF TURBULENT FLOWS , 2003 .

[13]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[14]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[15]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[16]  Ronald H. W. Hoppe,et al.  Element-oriented and edge-oriented local error estimators for nonconforming finite element methods , 1996 .

[17]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[18]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[19]  Z. Krasiński,et al.  Compression therapy in the prevention and treatment of lower limb venous thrombosis , 2006 .

[20]  Yinnian He,et al.  Stabilized finite element method for the non-stationaryNavier-Stokes problem , 2005 .

[21]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[22]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[23]  Silvia Bertoluzza,et al.  The discrete commutator property of approximation spaces , 1999 .

[24]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[25]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[26]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[27]  P. Hansbo,et al.  Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .

[28]  Michel Fortin,et al.  A minimal stabilisation procedure for mixed finite element methods , 2001, Numerische Mathematik.

[29]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[30]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[31]  Ramon Codina,et al.  Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations , 2000, Numerische Mathematik.

[32]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[33]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[34]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[35]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[36]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .