Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification

Polymers of intrinsic microporosity, e.g. PIM-1, are attractive materials for gas separation and energy development, which is ascribed mainly to their superior permeability. The H2 and CO2 permeability of PIM-1 is about 1300–4000 Barrer and 3000–8000 Barrer, respectively. However, it has a relatively low H2/CO2 selectivity of 0.4–0.8. Different from the previous UV rearrangement approach, for the first time we report here a viable method to tune the intrinsic properties of PIM-1 blend membranes from being CO2-selective to H2-selective via blending with Matrimid and subsequent cross-linking the mixed matrix membrane with diamines at room temperature. The ideal H2/CO2 selectivity of the membrane after modification by 2 h triethylenetetramine (TETA) improved dramatically from 0.4–0.8 to 9.6, with a H2 permeability of 395 Barrer. The modified membranes also show exceptional separation performance, surpassing the present upper bound for H2/CO2, H2/N2, H2/CH4 and O2/N2 separations. Positron annihilation lifetime spectroscopy (PALS) and Field emission scanning electron microscopy (FESEM) revealed that the diamine cross-linking successfully alters the membrane morphology from a dense to a composite structure. The X-ray diffraction (XRD) analysis and sorption data confirmed that the modified membrane has a smaller d-spacing and a decrease in the diffusivity coefficient. Our results also affirmed that the spatial structure, rather than the pKa value, of the diamine is the prevailing factor which governs the reactivity of diamines towards the PIM-1/Matrimid membrane due to the low concentration of cross-linkable polyimides distributing randomly in the polymer matrix. The fundamentals and knowledge gained throughout this study may facilitate the development of polymeric membranes for green H2 enrichment processes.

[1]  S. Stein,et al.  Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry. , 2014, Rapid communications in mass spectrometry : RCM.

[2]  Tai‐Shung Chung,et al.  High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation , 2013 .

[3]  F. Li,et al.  Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production , 2013 .

[4]  J. Ferraris,et al.  Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation , 2013 .

[5]  Christopher R. Mason,et al.  Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1 , 2013 .

[6]  D. R. Paul,et al.  Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation , 2013 .

[7]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[8]  Ting Yang,et al.  High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor , 2013 .

[9]  Youchang Xiao,et al.  UV‐Rearranged PIM‐1 Polymeric Membranes for Advanced Hydrogen Purification and Production , 2012 .

[10]  J. C. Jansen,et al.  A Spirobifluorene‐Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation , 2012, Advanced materials.

[11]  N. Le,et al.  Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation , 2012 .

[12]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[13]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[14]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[15]  L. Shao,et al.  A vapor-phase surface modification method to enhance different types of hollow fiber membranes for industrial scale hydrogen separation , 2010 .

[16]  M. Guzman,et al.  Characterizing Free Volumes and Layer Structures in Asymmetric Thin-Film Polymeric Membranes in the Wet Condition Using the Variable Monoenergy Slow Positron Beam , 2010 .

[17]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[18]  G. Koeckelberghs,et al.  A simplified diamine crosslinking method for PI nanofiltration membranes , 2010 .

[19]  Tai‐Shung Chung,et al.  A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification , 2009 .

[20]  Bee Ting Low,et al.  Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture , 2009 .

[21]  Tai‐Shung Chung,et al.  Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future , 2009 .

[22]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[23]  W. Koros,et al.  Decarboxylation-Induced Cross-Linking of a Polyimide for Enhanced CO2 Plasticization Resistance , 2008 .

[24]  Jingshe Song,et al.  Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene† , 2008 .

[25]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[26]  L. Robeson,et al.  The upper bound revisited , 2008 .

[27]  R. Hakvoort,et al.  Analysis of positron profiling data by means of ‘‘VEPFIT’’ , 2008 .

[28]  Ye Liu,et al.  Simultaneous Occurrence of Chemical Grafting, Cross-Linking, and Etching on the Surface of Polyimide Membranes and Their Impact on H2/CO2 Separation , 2008 .

[29]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[30]  G. Qiao,et al.  Reversible diamine cross-linking of polyimide membranes , 2007 .

[31]  R. Spontak,et al.  Membranes for Hydrogen Purification: An Important Step toward a Hydrogen-Based Economy , 2006 .

[32]  Tai‐Shung Chung,et al.  Surface Modification of Polyimide Membranes by Diamines for H2 and CO2 Separation , 2006 .

[33]  D. Schiraldi,et al.  Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films , 2005 .

[34]  L. Shao,et al.  Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers , 2004 .

[35]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[36]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[37]  Rong Wang,et al.  A critical review on diffusivity and the characterization of diffusivity of 6FDA–6FpDA polyimide membranes for gas separation , 2002 .

[38]  Young Moo Lee,et al.  Gas permeation of poly(amide-6-b-ethylene oxide) copolymer , 2001 .

[39]  Tai‐Shung Chung,et al.  Chemical cross-linking modification of polyimide membranes for gas separation , 2001 .

[40]  Tai‐Shung Chung,et al.  Gas transport properties of 6FDA‐durene/1,4‐phenylenediamine (pPDA) copolyimides , 2000 .

[41]  Timothy Christopher Golden,et al.  Purification of Hydrogen by Pressure Swing Adsorption , 2000 .

[42]  J. Claridge,et al.  Solid-State Structures of Phenyleneethynylenes: Comparison of Monomers and Polymers , 1999 .

[43]  W. Koros,et al.  Conditioning of Fluorine-Containing Polyimides. 2. Effect of Conditioning Protocol at 8 Volume Dilation on Gas-Transport Properties , 1999 .

[44]  R. Ramachandran,et al.  An overview of industrial uses of hydrogen , 1998 .

[45]  K. Okamoto,et al.  Positronium formation in various polyimides , 1993 .