Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique

The definition of boundaries, in a recovered model from an inversion, can be improved through the incorporation of known physical property values of a small number of geological units. Directly imposing strict physical property values into a Tikhonov regularized inversion transforms it into an integer programming problem. Solving an integer programming problem can be prohibitively expensive for large problems in practical applications. We propose a method to approximate a discrete-valued inverse problem by applying the guided fuzzy c-means clustering technique. This method enforces the discrete values to a high degree of approximation within the inversion by guiding the recovered model to cluster tightly around the known physical property values. Using this method, we are able incorporate the uncertainty in our physical property information and solve the corresponding minimization problem with derivative based minimization techniques, making this approach more efficient and broadly applicable. We apply th...

[1]  Jens Tronicke,et al.  Cooperative inversion of 2D geophysical data sets: A zonal approach based on fuzzy c-means cluster analysis , 2007 .

[2]  James C. Bezdek,et al.  Fuzzy c-means clustering of incomplete data , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[3]  R. Vieira,et al.  Gravity inversion by means of growing bodies , 2000 .

[4]  T. Dahlin,et al.  A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys , 2001 .

[5]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[6]  Yaoguo Li,et al.  Inversion of gravity data using a binary formulation , 2006 .

[7]  C. Farquharson,et al.  Minimum-structure borehole gravity inversion for mineral exploration: A synthetic modeling study , 2013 .

[8]  C. Farquharson,et al.  Geologically constrained gravity inversion for the Voisey's Bay ovoid deposit , 2008 .

[9]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[10]  A. Green,et al.  Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses , 2006 .

[11]  Jiajia Sun,et al.  3D magnetization inversion using fuzzy c-means clustering with application to geology differentiation , 2016 .

[12]  Sadaaki Miyamoto,et al.  Algorithms for Fuzzy Clustering - Methods in c-Means Clustering with Applications , 2008, Studies in Fuzziness and Soft Computing.

[13]  Peter G. Lelièvre,et al.  A study of fuzzy c-means coupling for joint inversion, using seismic tomography and gravity data test scenarios , 2015 .

[14]  Colin Farquharson,et al.  Constrained three - dimensional inversion of potential field data from the Voisey's Bay Ni - Cu - Co deposit, Labrador, Canada , 2006 .

[15]  R. Parker Geophysical Inverse Theory , 1994 .

[16]  Yaoguo Li,et al.  Hybrid optimization for lithologic inversion and time-lapse monitoring using a binary formulation , 2009 .

[17]  M. Zhdanov,et al.  3‐D magnetic inversion with data compression and image focusing , 2002 .

[18]  Anand B. Singh,et al.  Fuzzy constrained Lp-norm inversion of direct current resistivity data , 2018 .

[19]  A. King,et al.  Geophysics of the Voisey's Bay Ni‐Cu‐Co deposits , 1998 .

[20]  C. Farquharson,et al.  Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration , 2010 .

[21]  Jiajia Sun,et al.  Joint inversion of multiple geophysical data using guided fuzzy c-means clustering , 2016 .

[22]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[23]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[24]  Douglas W. Oldenburg,et al.  Joint inversion of surface and three‐component borehole magnetic data , 2000 .

[25]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[26]  Ping Zhang,et al.  Applications of geophysical inversions in mineral exploration , 1998 .

[27]  B. Ryan The Nain-Churchill Boundary and the Nain Plutonic Suite: A Regional Perspective on the Geologic Setting of the Voisey’s Bay Ni-Cu-Co Deposit , 2000 .

[28]  N. Phillips Geophysical inversion in an integrated exploration program : examples from the San Nicolas deposit , 2002 .

[29]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[30]  Jiajia Sun,et al.  Adaptive Lp Inversion to Recover Both Blocky And Smooth Features , 2010 .

[31]  Douglas W. Oldenburg,et al.  Integrating geological and geophysical data through advanced constrained inversions , 2009 .

[32]  D. Oldenburg,et al.  Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .

[33]  Yaoguo Li,et al.  Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering , 2015 .

[34]  Michael R. Ash Constrained inversion of gravity data over the Ovoid and Mini-Ovoid in the Voisey's Bay Ni-Cu-Co deposit, Labrador , 2007 .

[35]  Brendan D. Howe Constrained Potential Field Inversions in Areas under Cover: Examples from Gawler Craton IOCG Prospects , 2009 .

[36]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[37]  Sakir Esnaf,et al.  Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem , 2012, Expert Syst. Appl..

[38]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.