Variational principles on metric and uniform spaces

[1]  G. Isac,et al.  Nuclear and Full Nuclear Cones in Product Spaces: Pareto Efficiency and an Ekeland Type Variational Principle , 2005 .

[2]  Andreas Löhne Optimization with set relations: conjugate duality , 2005 .

[3]  A. B. Németh Regular Ordering and Existence of Minimum Points in Uniform Spaces and Topological Groups , 2004 .

[4]  Zili Wu,et al.  Equivalent formulations of Ekeland's variational principle , 2003 .

[5]  Qiu Jing-hui Ekeland's variational principle in locally complete spaces , 2003 .

[6]  A. Hamel Phelps’ lemma, Danes’ drop theorem and Ekeland’s principle in locally convex spaces , 2003 .

[7]  Daishi Kuroiwa Existence theorems of set optimization with set-valued maps , 2003 .

[8]  J. Qiu Local Completeness and Drop Theorem , 2002 .

[9]  Daishi Kuroiwa,et al.  On set-valued optimization , 2001 .

[10]  Y. J. Cho,et al.  Generalized Variational Principle and Vector Optimization , 2000 .

[11]  Sehie Park,et al.  On generalizations of the Ekeland-type variational principles , 2000 .

[12]  G. Jiang On Characterization of Metric Completeness , 2000 .

[13]  C. Zălinescu,et al.  On the vectoral Ekeland's variational principle and minimal points in product spaces , 2000 .

[14]  M. L. Apuzzo Summa cum laude. , 1999, Neurosurgery.

[15]  C. Zălinescu,et al.  A New Minimal Point Theorem in Product Spaces , 1999 .

[16]  X. X. Huang,et al.  Equivalents of an approximate variational principle for vector-valued functions and applications , 1999, Math. Methods Oper. Res..

[17]  X. X. Huang,et al.  A unified approach to the existing three types of variational principles for vector valued functions , 1998, Math. Methods Oper. Res..

[18]  X. X. Huang,et al.  Ekeland's ε-variational principle for set-valued mappings , 1998, Math. Methods Oper. Res..

[19]  G. Isac Ekeland's principle and nuclear cones: A geometrical aspect , 1997 .

[20]  Daishi Kuroiwa,et al.  On cone of convexity of set-valued maps , 1997 .

[21]  George Isac,et al.  Topics in Nonlinear Analysis and Applications , 1997 .

[22]  Adriaan C. Zaanen,et al.  Introduction to Operator Theory in Riesz Spaces , 1997 .

[23]  Wataru Takahashi,et al.  NONCONVEX MINIMIZATION THEOREMS AND FIXED POINT THEOREMS IN COMPLETE METRIC SPACES , 1996 .

[24]  Klaus Nehring,et al.  Continuous Extensions of an Order on a Set to the Power Set , 1996 .

[25]  C. Tammer,et al.  A New Maximal Point Theorem , 1995 .

[26]  W. Oettli,et al.  Equivalents of Ekeland's principle , 1993, Bulletin of the Australian Mathematical Society.

[27]  C. Gerth,et al.  Nonconvex separation theorems and some applications in vector optimization , 1990 .

[28]  N. Mizoguchi A generalization of Brøndsted’s results and its applications , 1990 .

[29]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[30]  Ioan Mackenzie James,et al.  Topological and Uniform Spaces , 1987 .

[31]  Jean-Paul Penot,et al.  The drop theorem,the petal theorem and Ekeland's variational principle , 1986 .

[32]  A. B. Németh A nonconvex vector minimization problem , 1986 .

[33]  I. Vályi,et al.  A general maximality principle and a fixed point theorem in uniform space , 1985 .

[34]  H. Corley On optimality conditions for maximizations with respect to cones , 1985 .

[35]  G. Godini A framework for best simultaneous approximation: Normed almost linear spaces , 1985 .

[36]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[37]  B. Peleg,et al.  A note on the extension of an order on a set to the power set , 1984 .

[38]  Cheng Chang On a Fixed Point Theorem of Contractive Type , 1983 .

[39]  F. Sullivan A characterization of complete metric spaces , 1981 .

[40]  I. Ekeland Nonconvex minimization problems , 1979 .

[41]  William A. Kirk,et al.  A generalization of Caristi’s theorem with applications to nonlinear mapping theory , 1977 .

[42]  F. Clarke The Maximum Principle under Minimal Hypotheses , 1976 .

[43]  Chi Song Wong On a fixed point theorem of contractive type , 1976 .

[44]  A. Brøndsted,et al.  On a lemma of Bishop and Phelps , 1974 .

[45]  I. Ekeland On the variational principle , 1974 .

[46]  M. Krasnosel’skiǐ,et al.  Solvability of nonlinear operator equations , 1971 .

[47]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[48]  Kennan T. Smith,et al.  Linear Topological Spaces , 1966 .

[49]  G. Kalisch On uniform spaces and topological algebra , 1946 .

[50]  J. Lasalle Pseudo-normed linear spaces , 1941 .

[51]  L. Kantorovitch The method of successive approximation for functional equations , 1939 .

[52]  D. H. Hyers Pseudo-normed linear spaces and Abelian groups , 1939 .

[53]  R. Young The algebra of many-valued quantities , 1931 .

[54]  Andreas H. Hamel,et al.  Minimal element theorems and Ekeland's principle with set relations , 2006 .

[55]  Andreas Löhne On Convex Functions with Values in Semi – linear Spaces , 2003 .

[56]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[57]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[58]  Shengjie Li,et al.  Vector Ekeland Variational Principle , 2000 .

[59]  G. Isac,et al.  The Ekeland’s Principle and the Pareto ε-Efficiency , 1996 .

[60]  Cheng Lixin,et al.  Danes’ Drop Theorem in locally convex spaces , 1996 .

[61]  Christiane Tammer,et al.  A variational principle and a fixed point theorem , 1993, System Modelling and Optimization.

[62]  Klaus Keimel,et al.  Ordered cones and approximation , 1992 .

[63]  Sehie Park,et al.  On generalized ordering principles in nonlinear analysis , 1990 .

[64]  M. Turinici METRIC VARIANTS OF THE BREZIS-BROWDER ORDERING PRINCIPLE , 1989 .

[65]  M. Turinici Pseudometric Extensions of the Brezis-Browder Ordering Principle , 1987 .

[66]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[67]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[68]  M. Turinici A GENERALIZATION OF ALTMAN'S ORDERING PRINCIPLE , 1984 .

[69]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[70]  Le van Hot Fixed point theorems for multivalued mappings , 1982 .

[71]  Jerrold Siegel,et al.  A NEW PROOF OF CARISTI'S FIXED POINT THEOREM , 1977 .

[72]  W. A. Kirk Caristi's fixed point theorem and metric convexity , 1976 .

[73]  J. Caristi Fixed point theorems for mappings satisfying inwardness conditions , 1976 .

[74]  S. Kasahara On Formulations of Topological Linear Spaces by Topological Semifields , 1973 .

[75]  A. Peressini Ordered topological vector spaces , 1967 .

[76]  László Fuchs,et al.  Teilweise geordnete algebraische Strukturen , 1966 .

[77]  A. Clifford,et al.  The algebraic theory of semigroups , 1964 .

[78]  D. H. Hyers Linear topological spaces , 1945 .