Retinal stimulation strategies to restore vision: Fundamentals and systems

Retinal degeneration, a leading cause of blindness worldwide, is primarily characterized by the dysfunctional/degenerated photoreceptors that impair the ability of the retina to detect light. Our group and others have shown that bioelectronic retinal implants restore useful visual input to those who have been blind for decades. This unprecedented approach of restoring sight demonstrates that patients can adapt to new visual input, and thereby opens up opportunities to not only improve this technology but also develop alternative retinal stimulation approaches. These future improvements or new technologies could have the potential of selectively stimulating specific cell classes in the inner retina, leading to improved visual resolution and color vision. In this review we will detail the progress of bioelectronic retinal implants and future devices in this genre as well as discuss other technologies such as optogenetics, chemical photoswitches, and ultrasound stimulation. We will discuss the principles, biological aspects, technology development, current status, clinical outcomes/prospects, and challenges for each approach. The review will cover functional imaging documented cortical responses to retinal stimulation in blind patients.

[1]  J. Wyatt,et al.  REVIEW ■ : Prospects for a Visual Prosthesis , 1997 .

[2]  L. Gavrilov,et al.  Application of focused ultrasound for the stimulation of neural structures. , 1996, Ultrasound in medicine & biology.

[3]  Armand R. Tanguay,et al.  An Intraocular Camera for Retinal Prostheses: Restoring Sight to the Blind , 2010 .

[4]  Cynthia Owsley,et al.  Photoreceptor degeneration and dysfunction in aging and age-related maculopathy , 2002, Ageing Research Reviews.

[5]  David B. Grayden,et al.  Heating of the Eye by a Retinal Prosthesis: Modeling, Cadaver and In Vivo Study , 2012, IEEE Transactions on Biomedical Engineering.

[6]  R. Hornig,et al.  Chronic Epiretinal Chip Implant in Blind Patients With Retinitis Pigmentosa: Long-Term Clinical Results , 2007 .

[7]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[8]  James D. Weiland,et al.  Visual Prosthesis , 2008, Proceedings of the IEEE.

[9]  Alice K. Cho,et al.  Retinal prostheses: current clinical results and future needs. , 2011, Ophthalmology.

[10]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[11]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[12]  D.B. McCreery,et al.  Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation , 1990, IEEE Transactions on Biomedical Engineering.

[13]  Zy Li,et al.  Rod photoreceptor neurite sprouting in retinitis pigmentosa , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Joseph E Marine,et al.  50th Anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions. , 2010, The American journal of cardiology.

[15]  C A Curcio,et al.  Preservation of ganglion cell layer neurons in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[16]  Joseph F Rizzo,et al.  Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit , 2005, Journal of neural engineering.

[17]  B. Roska,et al.  Optogenetic therapy for retinitis pigmentosa , 2011, Gene Therapy.

[18]  Yusuf Tufail,et al.  Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound , 2008, PloS one.

[19]  Gislin Dagnelie,et al.  Real and virtual mobility performance in simulated prosthetic vision , 2007, Journal of neural engineering.

[20]  R W RODIECK,et al.  Some quantitative methods for the study of spontaneous activity of single neurons. , 1962, Biophysical journal.

[21]  Yvonne Hsu-Lin Luo,et al.  The use of Argus® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[22]  C Owsley,et al.  Spare the rods, save the cones in aging and age-related maculopathy. , 2000, Investigative ophthalmology & visual science.

[23]  Shy Shoham,et al.  Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis , 2012, Journal of neural engineering.

[24]  Joseph F. Rizzo,et al.  A Hermetic Wireless Subretinal Neurostimulator for Vision Prostheses , 2011, IEEE Transactions on Biomedical Engineering.

[25]  Edward S Boyden,et al.  Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  Joseph F Rizzo,et al.  Selective activation of neuronal targets with sinusoidal electric stimulation. , 2010, Journal of neurophysiology.

[27]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[28]  Mark S Humayun,et al.  Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses , 2014, Journal of neural engineering.

[29]  Farhad Hafezi,et al.  Patients Blinded By Outer Retinal Dystrophies Are Able To Perceive Color Using The ArgusTm II Retinal Prosthesis System , 2011 .

[30]  E J Chichilnisky,et al.  Focal Electrical Stimulation of Major Ganglion Cell Types in the Primate Retina for the Design of Visual Prostheses , 2013, The Journal of Neuroscience.

[31]  Gislin Dagnelie,et al.  Visually guided performance of simple tasks using simulated prosthetic vision. , 2003, Artificial organs.

[32]  Azita Emami-Neyestanak,et al.  Design considerations for high-density fully intraocular epiretinal prostheses , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[33]  Thomas Schanze,et al.  Visual resolution with retinal implants estimated from recordings in cat visual cortex , 2006, Vision Research.

[34]  Feng Feng,et al.  Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue , 2012 .

[35]  Jenny Ahlqvist,et al.  Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy. , 2014, Translational vision science & technology.

[36]  Joseph F. Rizzo,et al.  Developments on the Boston 256-channel retinal implant , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[37]  A. Sher,et al.  Photovoltaic Retinal Prosthesis with High Pixel Density , 2012, Nature Photonics.

[38]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[39]  Zhuo-Hua Pan,et al.  Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. , 2010, Investigative ophthalmology & visual science.

[40]  Ryad Benosman,et al.  Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device , 2012, Journal of neural engineering.

[41]  F. Werblin,et al.  A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. , 2006, Journal of neurophysiology.

[42]  Inbar Brosh,et al.  Holographic optogenetic stimulation of patterned neuronal activity for vision restoration , 2013, Nature Communications.

[43]  T. Wachtler,et al.  Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. , 2011, Investigative ophthalmology & visual science.

[44]  Angelika Braun,et al.  Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS , 2013, Proceedings of the Royal Society B: Biological Sciences.

[45]  Stuart Richer,et al.  Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). , 2004, Optometry.

[46]  D Elliott,et al.  Eye-hand coordination in goal-directed aiming. , 2001, Human movement science.

[47]  Eyal Margalit,et al.  Inner retinal mechanisms engaged by retinal electrical stimulation. , 2006, Investigative ophthalmology & visual science.

[48]  B. Wilhelm,et al.  Subretinal Visual Implant Alpha IMS – Clinical trial interim report , 2015, Vision Research.

[49]  Jessy D. Dorn,et al.  The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss , 2013, British Journal of Ophthalmology.

[50]  Avi Caspi,et al.  Acuboost™: Enhancing the maximum acuity of the Argus II Retinal Prosthesis System , 2013 .

[51]  Hemant Khanna,et al.  Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa , 2012, Proceedings of the National Academy of Sciences.

[52]  I. Wong,et al.  Promises of stem cell therapy for retinal degenerative diseases , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[53]  Michael Bach,et al.  Safety and efficacy of subretinal visual implants in humans: methodological aspects , 2013, Clinical & experimental optometry.

[54]  Siegrid Löwel,et al.  Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool , 2015, PLoS biology.

[55]  H. Kishima,et al.  Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[56]  H. Lorach,et al.  Retinal safety of near infrared radiation in photovoltaic restoration of sight. , 2016, Biomedical optics express.

[57]  J. R. Hughes,et al.  Brief, noninjurious electric waveform for stimulation of the brain. , 1955, Science.

[58]  James D. Weiland,et al.  Comparison of Electrical Stimulation Thresholds in Normal and Retinal Degenerated Mouse Retina , 2004, Japanese Journal of Ophthalmology.

[59]  Daniel Palanker,et al.  Design of a high-resolution optoelectronic retinal prosthesis , 2005, Journal of neural engineering.

[60]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[61]  A. Milam,et al.  Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. , 2000, American journal of ophthalmology.

[62]  Farhad Hafezi,et al.  Patients blinded by outer retinal dystrophies are able to perceive simultaneous colors using the Argus® II Retinal Prosthesis System , 2012 .

[63]  J. D. Weiland,et al.  Resolution of the Epiretinal Prosthesis is not Limited by Electrode Size , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[64]  K. Mathieson,et al.  Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration , 2015, Vision Research.

[65]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[66]  Konrad Lehmann,et al.  Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells , 2010, The Journal of Neuroscience.

[67]  F. Rattay Analysis of Models for External Stimulation of Axons , 1986, IEEE Transactions on Biomedical Engineering.

[68]  Annette E. Allen,et al.  Restoration of Vision with Ectopic Expression of Human Rod Opsin , 2015, Current Biology.

[69]  Bart L H Bemelmans,et al.  The use of electrical devices for the treatment of bladder dysfunction: a review of methods. , 2004, The Journal of urology.

[70]  Thomas Laube,et al.  Acute electrical stimulation of the human retina with an epiretinal electrode array , 2012, Acta ophthalmologica.

[71]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[72]  David R. Pepperberg,et al.  Potentiation of bipolar cell GABAA receptors by a photo-isomerizable compound , 2013 .

[73]  Yumei Li,et al.  Application of next-generation sequencing to identify genes and mutations causing autosomal dominant retinitis pigmentosa (adRP). , 2014, Advances in experimental medicine and biology.

[74]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[75]  A. M. Potts,et al.  The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. , 1969, Investigative ophthalmology.

[76]  J. Mortimer,et al.  Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode , 1998, Brain Research.

[77]  A. Sher,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[78]  Zhuo-Hua Pan,et al.  Ectopic Expression of Multiple Microbial Rhodopsins Restores ON and OFF Light Responses in Retinas with Photoreceptor Degeneration , 2009, The Journal of Neuroscience.

[79]  Francesco Merlini,et al.  The use of Argus® II Retinal Prosthesis to Identify Common Objects in Blind Subjects with Outer Retinal Dystrophies , 2014 .

[80]  James D. Weiland,et al.  Argus® II Retinal Prosthesis System , 2017 .

[81]  S.F. Cogan,et al.  Electrodeposited iridium oxide for neural stimulation and recording electrodes , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[82]  J. Weiland,et al.  Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. , 2007, American journal of ophthalmology.

[83]  C. Enroth-Cugell,et al.  Spatiotemporal frequency responses of cat retinal ganglion cells , 1987, The Journal of general physiology.

[84]  B. Wilhelm,et al.  Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. , 2011, Investigative ophthalmology & visual science.

[85]  B. Sellhaus,et al.  Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. , 2009, Investigative ophthalmology & visual science.

[86]  D. Palanker,et al.  Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes , 2014, Journal of neural engineering.

[87]  Guglielmo Lanzani,et al.  A polymer optoelectronic interface restores light sensitivity in blind rat retinas , 2013, Nature Photonics.

[88]  Yiming Huang,et al.  Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases , 2011, Stem Cell Reviews and Reports.

[89]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[90]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[91]  P. Jong Prevalence of age-related macular degeneration in the United States. , 2004 .

[92]  Hugh J. McDermott,et al.  Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis. , 2014, Investigative ophthalmology & visual science.

[93]  J. Weiland,et al.  Retinal Prosthesis , 2014, IEEE Transactions on Biomedical Engineering.

[94]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[95]  D. Dacey Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. , 1994, Ciba Foundation symposium.

[96]  A. Y. Chow,et al.  Subretinal implantation of semiconductor-based photodiodes: progress and challenges. , 1999, Journal of rehabilitation research and development.

[97]  Christofer Toumazou,et al.  Modeling Study of the Light Stimulation of a Neuron Cell With Channelrhodopsin-2 Mutants , 2011, IEEE Transactions on Biomedical Engineering.

[98]  Ian J Constable,et al.  Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial , 2015, The Lancet.

[99]  J. Rubinstein,et al.  In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes , 1991, IEEE Transactions on Biomedical Engineering.

[100]  Ru Xiao,et al.  In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector. , 2015, Cell reports.

[101]  Mark S Humayun,et al.  Predicting visual sensitivity in retinal prosthesis patients. , 2009, Investigative ophthalmology & visual science.

[102]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[103]  Dirk Trauner,et al.  Photochemical Restoration of Visual Responses in Blind Mice , 2012, Neuron.

[104]  Mark S Humayun,et al.  Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. , 2012, Investigative ophthalmology & visual science.

[105]  Joseph F. Rizzo,et al.  Advanced Hermetic Feedthrough and Packaging Technology for the Boston Retinal Prosthesis , 2014 .

[106]  Robert J. Lang,et al.  Parylene origami structure for intraocular implantation , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[107]  Arup Roy,et al.  Factors affecting perceptual thresholds in epiretinal prostheses. , 2008, Investigative ophthalmology & visual science.

[108]  Rava Azeredo da Silveira,et al.  Cell Types, Circuits, Computation , 2011, Current Opinion in Neurobiology.

[109]  J. Szlyk,et al.  Relationship between difficulty in performing daily activities and clinical measures of visual function in patients with retinitis pigmentosa. , 1997, Archives of ophthalmology.

[110]  Farhad Hafezi,et al.  Temporal properties of visual perception on electrical stimulation of the retina. , 2012, Investigative ophthalmology & visual science.

[111]  J. Barrett,et al.  Optogenetic approaches to retinal prosthesis , 2014, Visual Neuroscience.

[112]  James D. Weiland,et al.  An In Vitro Model of a Retinal Prosthesis , 2008, IEEE Transactions on Biomedical Engineering.

[113]  Chris E. Williams,et al.  First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis , 2014, PloS one.

[114]  A. Milam,et al.  Histopathology of the human retina in retinitis pigmentosa. , 1998, Progress in retinal and eye research.

[115]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[116]  Shomi S. Bhattacharya,et al.  Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa with preserved para-arteriolar RPE (RP12). , 2000 .

[117]  Chethan Pandarinath,et al.  Retinal prosthetic strategy with the capacity to restore normal vision , 2012, Proceedings of the National Academy of Sciences.

[118]  M. Mladejovsky,et al.  Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis , 1974, Science.

[119]  Mark S. Humayun,et al.  Imaging Novel Ruthenium bipyridine-based Nanophotoswitches in Retina , 2015 .

[120]  Joshua Pfefer,et al.  Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode , 2011, Journal of neural engineering.

[121]  Eberhart Zrenner,et al.  Investigation of thermal effects of infrared lasers on the rabbit retina: a study in the course of development of an active subretinal prosthesis , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[122]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[123]  A. Williams,et al.  Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans , 2014, Nature Neuroscience.

[124]  W. Chambers,et al.  Threshold movements produced by excitation of cerebral cortex and efferent fibers with some parametric regions of rectangular current pulses (cats and monkeys). , 1952, Journal of neurophysiology.

[125]  J. Weiland,et al.  Perceptual thresholds and electrode impedance in three retinal prosthesis subjects , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[126]  J. Weiland,et al.  Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration , 2015, Science Translational Medicine.

[127]  Deniz Dalkara,et al.  In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous , 2013, Science Translational Medicine.

[128]  Jie Zhu,et al.  Subpixel eye gaze tracking , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[129]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[130]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[131]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[132]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[133]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[134]  E. Chichilnisky,et al.  High-Fidelity Reproduction of Spatiotemporal Visual Signals for Retinal Prosthesis , 2014, Neuron.

[135]  Dirk Trauner,et al.  Restoring Visual Function to Blind Mice with a Photoswitch that Exploits Electrophysiological Remodeling of Retinal Ganglion Cells , 2014, Neuron.

[136]  E. Chichilnisky,et al.  High-Resolution Electrical Stimulation of Primate Retina for Epiretinal Implant Design , 2008, The Journal of Neuroscience.

[137]  Patrick Degenaar,et al.  Multi-site optical excitation using ChR2 and micro-LED array , 2010, Journal of neural engineering.

[138]  N. Bressler Age-related macular degeneration is the leading cause of blindness... , 2004, JAMA.

[139]  S. Baccus,et al.  Precise Neural Stimulation in the Retina Using Focused Ultrasound , 2013, The Journal of Neuroscience.

[140]  E. Chichilnisky,et al.  Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. , 2006, Journal of neurophysiology.

[141]  Peter Charbel Issa,et al.  Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation , 2013, Proceedings of the National Academy of Sciences.

[142]  Sébastien Joucla,et al.  Improved Focalization of Electrical Microstimulation Using Microelectrode Arrays: A Modeling Study , 2009, PloS one.

[143]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[144]  P. Rosenfeld,et al.  Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies , 2015, The Lancet.

[145]  D. Protti,et al.  Responses of Retinal Ganglion Cells to Extracellular Electrical Stimulation, from Single Cell to Population: Model-Based Analysis , 2012, PloS one.

[146]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[147]  Mark S Humayun,et al.  Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina. , 2011, Journal of neurophysiology.

[148]  Farhad Hafezi,et al.  Subjects Blinded By Outer Retinal Dystrophies Are Able To Recognize Shapes Using The Argus II Retinal Prosthesis System , 2011 .

[149]  Jessy D. Dorn,et al.  Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind. , 2015, Ophthalmology.

[150]  Mark S Humayun,et al.  Preservation of retinotopic map in retinal degeneration. , 2012, Experimental eye research.

[151]  Gislin Dagnelie,et al.  The functional performance of the Argus II retinal prosthesis , 2014, Expert review of medical devices.

[152]  N H Lovell,et al.  Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants , 2011, Journal of neural engineering.

[153]  J T Mortimer,et al.  Experimental nondestructive electrical stimulation of the brain and spinal cord. , 1970, Journal of neurosurgery.

[154]  Sheila Nirenberg,et al.  Restoring Vision to the Blind : Optogenetics The Lasker / IRRF Initiative for Innovation in Vision Science Discussion Leaders : , 2014 .

[155]  Philip C Hessburg Special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip. , 2011, Journal of neural engineering.

[156]  E. Bamberg,et al.  General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. , 1997, Biochemistry.

[157]  Eberhart Zrenner,et al.  Functional outcome in subretinal electronic implants depends on foveal eccentricity. , 2013, Investigative ophthalmology & visual science.

[158]  Antonio Martínez-Álvarez,et al.  Modeling the role of fixational eye movements in real-world scenes , 2015, Neurocomputing.

[159]  D V Palanker,et al.  Holographic display system for restoration of sight to the blind , 2013, Journal of neural engineering.

[160]  Mark S Humayun,et al.  Ten-Year Follow-up of a Blind Patient Chronically Implanted with Epiretinal Prosthesis Argus I. , 2015, Ophthalmology.

[161]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[162]  B. Wilson,et al.  Cochlear Implants: Principles & Practices , 2000 .

[163]  Hamish Meffin,et al.  Prosthetic vision: devices, patient outcomes and retinal research , 2015, Clinical & experimental optometry.

[164]  Mark S Humayun,et al.  Toward a wide-field retinal prosthesis , 2009, Journal of neural engineering.

[165]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[166]  S. B. Brummer,et al.  Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes , 1975 .

[167]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[168]  Alan Bird,et al.  Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy , 1993, Nature Genetics.

[169]  P Bergonzo,et al.  Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation , 2011, Journal of neural engineering.

[170]  Takashi Fujikado,et al.  Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs. , 2011, Investigative ophthalmology & visual science.

[171]  Avi Caspi,et al.  Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. , 2009, Archives of ophthalmology.

[172]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[173]  Xoana G. Troncoso,et al.  Microsaccades Counteract Visual Fading during Fixation , 2005, Neuron.

[174]  B. Roska,et al.  Cell-Type-Specific Electric Stimulation for Vision Restoration , 2014, Neuron.

[175]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[176]  Georges Goetz,et al.  Recognizing retinal ganglion cells in the dark , 2015, NIPS.

[177]  Jean Bennett,et al.  Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter , 2014, EMBO molecular medicine.

[178]  Srinivas R. Sadda,et al.  Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina , 2006, Vision Research.

[179]  S. Tillery,et al.  Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits , 2010, Neuron.

[180]  James D. Weiland,et al.  In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes , 2002, IEEE Transactions on Biomedical Engineering.

[181]  E. Eskandar,et al.  Getting signals into the brain: visual prosthetics through thalamic microstimulation. , 2009, Neurosurgical focus.

[182]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[183]  Olivier Marre,et al.  Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[184]  V. Arshavsky,et al.  Progress in Retinal and Eye Research , 2008 .

[185]  Yvonne Hsu-Lin Luo,et al.  The Argus II Retinal Prosthesis System , 2019, Prosthesis.

[186]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[187]  Joseph F Rizzo,et al.  Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode , 2005, Journal of neural engineering.

[188]  Feng Feng,et al.  ROBUST PHOTO-REGULATION OF GABAA RECEPTORS BY ALLOSTERIC MODULATION WITH A PROPOFOL ANALOG , 2012, Nature Communications.

[189]  Sheila Nirenberg,et al.  A Virtual Retina for Studying Population Coding , 2013, PloS one.

[190]  B. Rappaz,et al.  Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task , 2004, Vision Research.

[191]  W. Mokwa,et al.  Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial , 2012, Eye.

[192]  J. Dowling,et al.  Current and future prospects for optoelectronic retinal prostheses , 2009, Eye.

[193]  R. Jensen,et al.  Responses of ganglion cells to repetitive electrical stimulation of the retina , 2007, Journal of neural engineering.

[194]  Joseph F Rizzo,et al.  Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. , 2006, Experimental eye research.

[195]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[196]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[197]  Nigel H Lovell,et al.  Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration , 2013, Journal of neural engineering.

[198]  Ava K. Bittner,et al.  The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis). , 2010, Transactions of the American Ophthalmological Society.

[199]  W. Noell,et al.  Ultrastructure of remnant photoreceptors in advanced hereditary retinal degeneration. , 1984, Investigative ophthalmology & visual science.

[200]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[201]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[202]  K W Horch,et al.  Reading speed with a pixelized vision system. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[203]  D. Carpenter,et al.  Choroidal blood flow. III. Reflexive control in human eyes. , 1983, Archives of ophthalmology.

[204]  Victor Pikov,et al.  Light-triggered modulation of cellular electrical activity by ruthenium diimine nanoswitches. , 2013, ACS chemical neuroscience.

[205]  Ziad M. Hafed,et al.  Oculomotor behavior of blind patients seeing with subretinal visual implant Alpha IMS , 2015 .

[206]  E J Chichilnisky,et al.  Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration. , 2009, Journal of neurophysiology.

[207]  A. Sher,et al.  Photovoltaic retinal prosthesis: implant fabrication and performance , 2012, Journal of neural engineering.

[208]  M. Humayun,et al.  MORPHOMETRIC ANALYSIS OF THE MACULA IN EYES WITH DISCIFORM AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[209]  A. Ramé [Age-related macular degeneration]. , 2006, Revue de l'infirmiere.

[210]  Christian Simader,et al.  Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. , 2012, Ophthalmology.

[211]  M. Mcmahon,et al.  Retinal prosthesis phosphene shape analysis , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[212]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[213]  Rolf Eckmiller,et al.  Tunable retina encoders for retina implants: why and how , 2005, Journal of neural engineering.

[214]  G. Hageman,et al.  Age-Related Macular Degeneration (AMD) , 2008 .

[215]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[216]  R.V. Shannon,et al.  A model of safe levels for electrical stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[217]  R. Friedlander,et al.  Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. , 2014, Neurosurgery.

[218]  Tatsuya Murakami,et al.  Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport. , 2012, Journal of the American Chemical Society.

[219]  N. Grossman,et al.  Individually addressable optoelectronic arrays for optogenetic neural stimulation , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[220]  Dirk Trauner,et al.  A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. , 2013, Journal of the American Chemical Society.

[221]  Yusuf Tufail,et al.  Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound , 2011, Nature Protocols.

[222]  R. Eckhorn,et al.  Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex , 2003, Visual Neuroscience.

[223]  B. Jones,et al.  Effect of shape and coating of a subretinal prosthesis on its integration with the retina. , 2009, Experimental eye research.

[224]  Daniel K Freeman,et al.  Multiple components of ganglion cell desensitization in response to prosthetic stimulation , 2011, Journal of neural engineering.

[225]  A Vanhoestenberghe,et al.  Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices , 2013, Journal of neural engineering.