Coherent population trapping in diamond N-V centers at zero magnetic field

All-optical coherent population trapping is possible in nitrogen-vacancy centers in diamond at zero magnetic field. This should allow for simpler implementations of potential devices involving optical manipulation of electron spins.

[1]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[2]  Brant C. Gibson,et al.  Critical components for diamond-based quantum coherent devices , 2006 .

[3]  N. Manson,et al.  The nitrogen-vacancy center in diamond re-visited , 2006, cond-mat/0601360.

[4]  Brant C. Gibson,et al.  Ion‐Beam‐Assisted Lift‐Off Technique for Three‐Dimensional Micromachining of Freestanding Single‐Crystal Diamond , 2005 .

[5]  Neil B. Manson,et al.  Photo-ionization of the nitrogen-vacancy center in diamond , 2005 .

[6]  S. Ya. Kilin,et al.  A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins , 2005 .

[7]  D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005, cond-mat/0507706.

[8]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[9]  T. Spiller,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2003, quant-ph/0310066.

[10]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[11]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[12]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[13]  Neil B. Manson,et al.  Perturbing an electromagnetic induced transparency within an inhomogeneously broadened transition , 2003 .

[14]  Alexander P. Nizovtsev,et al.  Single spin states in a defect center resolved by optical spectroscopy , 2002 .

[15]  R. Brouri,et al.  Room temperature stable single-photon source , 2001, quant-ph/0110176.

[16]  M S Shahriar,et al.  Raman-excited spin coherences in nitrogen-vacancy color centers in diamond. , 2001, Optics letters.

[17]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[18]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[19]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[20]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[21]  J.P.D. Martin,et al.  Fine structure of excited 3E state in nitrogen-vacancy centre of diamond , 1999 .

[22]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[23]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[24]  White,et al.  Raman scattering from MeV-ion implanted diamond. , 1995, Physical review. B, Condensed matter.

[25]  R. Kalish,et al.  Damage threshold for ion‐beam induced graphitization of diamond , 1995 .

[26]  Neil B. Manson,et al.  Transient hole burning in N-V centre in diamond , 1994 .

[27]  E. van Oort,et al.  Microwave-induced line-narrowing of the N-V defect absorption in diamond , 1991 .

[28]  Neil B. Manson,et al.  Two-laser spectral hole burning in a colour centre in diamond , 1987 .

[29]  G. Orriols,et al.  Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping , 1976 .

[30]  C. R. Stroud,et al.  Double optical resonance , 1976 .

[31]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.