Rotavirus non-structural proteins: structure and function.

[1]  David F. Smith,et al.  Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen , 2012, Nature.

[2]  M. McCrae,et al.  The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. , 2012, Virus research.

[3]  M. Ouldali,et al.  Structural organisation of the rotavirus nonstructural protein NSP5. , 2011, Journal of molecular biology.

[4]  M. McCrae,et al.  Regulation of gene expression by the NSP1 and NSP3 non-structural proteins of rotavirus , 2011, Archives of Virology.

[5]  R. Read,et al.  Novel Pentameric Structure of the Diarrhea-Inducing Region of the Rotavirus Enterotoxigenic Protein NSP4 , 2011, Journal of Virology.

[6]  C. V. Williams,et al.  Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells , 2011, Virology Journal.

[7]  J. Ousingsawat,et al.  Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption , 2011, Pflügers Archiv - European Journal of Physiology.

[8]  Nikolaus Grigorieff,et al.  Atomic model of an infectious rotavirus particle , 2010, The EMBO journal.

[9]  J. Patton,et al.  Diversity of Interferon Antagonist Activities Mediated by NSP1 Proteins of Different Rotavirus Strains , 2010, Journal of Virology.

[10]  M. Estes,et al.  Rotavirus Disrupts Calcium Homeostasis by NSP4 Viroporin Activity , 2010, mBio.

[11]  O. Burrone,et al.  Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins. , 2010, The Journal of general virology.

[12]  S. Komoto,et al.  Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection , 2010, Journal of Virology.

[13]  C. Kaminski,et al.  Rotaviruses Associate with Cellular Lipid Droplet Components To Replicate in Viroplasms, and Compounds Disrupting or Blocking Lipid Droplets Inhibit Viroplasm Formation and Viral Replication , 2010, Journal of Virology.

[14]  J. Lepault,et al.  Sequestration of Free Tubulin Molecules by the Viral Protein NSP2 Induces Microtubule Depolymerization during Rotavirus Infection , 2009, Journal of Virology.

[15]  B. Cosson,et al.  The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain. , 2009, Biochemical and Biophysical Research Communications - BBRC.

[16]  A. Schmidt,et al.  5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I , 2009, Proceedings of the National Academy of Sciences.

[17]  G. Holloway,et al.  Sialic acid dependence in rotavirus host cell invasion. , 2009, Nature chemical biology.

[18]  M. Hardy,et al.  Rotavirus NSP1 Inhibits NFκB Activation by Inducing Proteasome-Dependent Degradation of β-TrCP: A Novel Mechanism of IFN Antagonism , 2009, PLoS pathogens.

[19]  Matthew L. Baker,et al.  Rotavirus Architecture at Subnanometer Resolution , 2008, Journal of Virology.

[20]  M. Estes,et al.  Integrins α1β1 and α2β1 are receptors for the rotavirus enterotoxin , 2008, Proceedings of the National Academy of Sciences.

[21]  F. Michelangeli,et al.  Silencing of Rotavirus NSP4 or VP7 Expression Reduces Alterations in Ca2+ Homeostasis Induced by Infection of Cultured Cells , 2008, Journal of Virology.

[22]  M. Estes,et al.  Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. , 2008, Virology.

[23]  M. McCrae,et al.  Characterization of the NSP6 protein product of rotavirus gene 11. , 2007, Virus research.

[24]  B. Prasad,et al.  Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals an NDP kinase like activity , 2007 .

[25]  U. Desselberger,et al.  Impaired hyperphosphorylation of rotavirus NSP5 in cells depleted of casein kinase 1alpha is associated with the formation of viroplasms with altered morphology and a moderate decrease in virus replication. , 2007, The Journal of general virology.

[26]  B. Prasad,et al.  Crystallographic and Biochemical Analysis of Rotavirus NSP2 with Nucleotides Reveals a Nucleoside Diphosphate Kinase-Like Activity , 2007, Journal of Virology.

[27]  E. Mackow,et al.  The Formation of Viroplasm-Like Structures by the Rotavirus NSP5 Protein Is Calcium Regulated and Directed by a C-Terminal Helical Domain , 2007, Journal of Virology.

[28]  C. V. Williams,et al.  Full-Length, Glycosylated NSP4 Is Localized to Plasma Membrane Caveolae by a Novel Raft Isolation Technique , 2007, Journal of Virology.

[29]  M. Hardy,et al.  Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability. , 2007, The Journal of general virology.

[30]  M. Estes,et al.  Expression of Rotavirus NSP4 Alters the Actin Network Organization through the Actin Remodeling Protein Cofilin , 2007, Journal of Virology.

[31]  U. Desselberger,et al.  Interaction of Rotavirus Polymerase VP1 with Nonstructural Protein NSP5 Is Stronger than That with NSP2 , 2006, Journal of Virology.

[32]  Xiaofang Jiang,et al.  Cryoelectron Microscopy Structures of Rotavirus NSP2-NSP5 and NSP2-RNA Complexes: Implications for Genome Replication , 2006, Journal of Virology.

[33]  C. Arias,et al.  Rotavirus Nonstructural Protein NSP3 Is Not Required for Viral Protein Synthesis , 2006, Journal of Virology.

[34]  L. Padilla-Noriega,et al.  Association of rotavirus viroplasms with microtubules through NSP2 and NSP5. , 2006, Memorias do Instituto Oswaldo Cruz.

[35]  B. Prasad,et al.  Structure-Function Analysis of Rotavirus NSP2 Octamer by Using a Novel Complementation System , 2006, Journal of Virology.

[36]  Fernando D Gonzalez-Nilo,et al.  Histidine Triad-like Motif of the Rotavirus NSP2 Octamer Mediates both RTPase and NTPase Activities , 2006, Journal of Molecular Biology.

[37]  M. Estes,et al.  Rotavirus NSP4 Induces a Novel Vesicular Compartment Regulated by Calcium and Associated with Viroplasms , 2006, Journal of Virology.

[38]  A. McIntosh,et al.  The Rotavirus Enterotoxin NSP4 Directly Interacts with the Caveolar Structural Protein Caveolin-1 , 2006, Journal of Virology.

[39]  M. Tortorici,et al.  Rotavirus genome replication and morphogenesis: role of the viroplasm. , 2006, Current topics in microbiology and immunology.

[40]  C. Arias,et al.  Early steps in rotavirus cell entry. , 2006, Current topics in microbiology and immunology.

[41]  M. Tortorici,et al.  Rotavirus Glycoprotein NSP4 Is a Modulator of Viral Transcription in the Infected Cell , 2005, Journal of Virology.

[42]  C. Arias,et al.  Silencing the Morphogenesis of Rotavirus , 2005, Journal of Virology.

[43]  C. Eichwald,et al.  Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-67 by casein kinase 1 is essential for hyperphosphorylation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Rossen,et al.  Rotavirus Enterotoxin NSP4 Binds to the Extracellular Matrix Proteins Laminin-β3 and Fibronectin , 2004, Journal of Virology.

[45]  L. Silvestri,et al.  Rotavirus Replication: Plus-Sense Templates for Double-Stranded RNA Synthesis Are Made in Viroplasms , 2004, Journal of Virology.

[46]  Jean Cohen,et al.  Rotavirus Nonstructural Protein NSP5 Interacts with Major Core Protein VP2 , 2003, Journal of Virology.

[47]  S. Burley,et al.  Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. , 2002, Molecular cell.

[48]  B. Prasad,et al.  Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold , 2002, Nature.

[49]  P. Vende,et al.  RNA-Binding Activity of the Rotavirus Phosphoprotein NSP5 Includes Affinity for Double-Stranded RNA , 2002, Journal of Virology.

[50]  Jean Cohen,et al.  Rafts Promote Assembly and Atypical Targeting of a Nonenveloped Virus, Rotavirus, in Caco-2 Cells , 2002, Journal of Virology.

[51]  Rahul C. Deo,et al.  Recognition of the Rotavirus mRNA 3′ Consensus by an Asymmetric NSP3 Homodimer , 2002, Cell.

[52]  J. Patton,et al.  Identification and Characterization of the Helix-Destabilizing Activity of Rotavirus Nonstructural Protein NSP2 , 2001, Journal of Virology.

[53]  S. Lin,et al.  Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. , 2000, Journal of molecular biology.

[54]  A. Bellamy,et al.  Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules , 2000, The EMBO journal.

[55]  P. Vende,et al.  Efficient Translation of Rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3′ End , 2000, Journal of Virology.

[56]  C. Arias,et al.  The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. , 2000, The Journal of general virology.

[57]  A. Sachs 10 Physical and Functional Interactions between the mRNA Cap Structure and the Poly(A) Tail , 2000 .

[58]  J. Patton,et al.  Multimers Formed by the Rotavirus Nonstructural Protein NSP2 Bind to RNA and Have Nucleoside Triphosphatase Activity , 1999, Journal of Virology.

[59]  E. Fabbretti,et al.  Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. , 1999, The Journal of general virology.

[60]  M. Nilsson,et al.  The Molecular Chaperone Calnexin Interacts with the NSP4 Enterotoxin of Rotavirus In Vivo and In Vitro , 1998, Journal of Virology.

[61]  Jean Cohen,et al.  Rotavirus RNA‐binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F , 1998, The EMBO journal.

[62]  A. Fuentes,et al.  Analysis of Rotavirus Nonstructural Protein NSP5 Phosphorylation , 1998, Journal of Virology.

[63]  A. Bellamy,et al.  Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells , 1997, Journal of virology.

[64]  M. Estes,et al.  Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles , 1997, Nature Structural Biology.

[65]  A. Fuentes,et al.  Serine protein kinase activity associated with rotavirus phosphoprotein NSP5 , 1997, Journal of virology.

[66]  Jean Cohen,et al.  In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms , 1997, Journal of virology.

[67]  O. Burrone,et al.  Phosphorylation generates different forms of rotavirus NSP5. , 1996, The Journal of general virology.

[68]  W. Chiu,et al.  Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus , 1996, Nature.

[69]  M. Estes,et al.  Age-Dependent Diarrhea Induced by a Rotaviral Nonstructural Glycoprotein , 1996, Science.

[70]  D. Poncet,et al.  Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells , 1993, Journal of virology.

[71]  A. Sandino,et al.  Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase , 1991, Journal of virology.

[72]  M. Estes,et al.  Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. , 1991, Virology.

[73]  P. H. Atkinson,et al.  Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures , 1990, Journal of virology.

[74]  M. Estes,et al.  Receptor activity of rotavirus nonstructural glycoprotein NS28 , 1989, Journal of virology.

[75]  M. Estes,et al.  Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein , 1989, Journal of virology.

[76]  A. Bellamy,et al.  Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. , 1989, The EMBO journal.

[77]  M. Estes,et al.  Topography of the simian rotavirus nonstructural glycoprotein (NS28) in the endoplasmic reticulum membrane. , 1988, Virology.

[78]  D. Graham,et al.  Ultrastructural localization of rotavirus antigens using colloidal gold. , 1984, Virus research.

[79]  Y. Furuichi,et al.  Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments , 1983, Journal of virology.

[80]  M. McCrae,et al.  Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. , 1983, Virology.