A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes

The goal of this paper is to briefly recall the importance of the adjoint method in many problems of sensitivity analysis, uncertainty quantification and optimization when the model is a differential equation. We illustrate this notion with some recent examples. As is well known, from a computational point of view the adjoint method is intrusive, meaning that it requires some changes in the numerical codes. Therefore we advocate that any new software development must take into account this issue, right from its inception.

[1]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[2]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[3]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[4]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[5]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[6]  G. Allaire,et al.  Shape optimization with a level set based mesh evolution method , 2014 .

[7]  A. Chambolle,et al.  Design-dependent loads in topology optimization , 2003 .

[8]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[9]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[10]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[11]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[12]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[13]  R. Errico What is an adjoint model , 1997 .

[14]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[15]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[16]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[17]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[18]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[19]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[20]  Grégoire Allaire,et al.  A linearized approach to worst-case design in parametric and geometric shape optimization , 2014 .

[21]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[22]  G. Allaire,et al.  Structural optimization using topological and shape sensitivity via a level set method , 2005 .

[23]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[24]  Laurent Hascoët,et al.  The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.

[25]  Flow Control of Curved Air Ducts using Topological Derivatives , 2009 .

[26]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[27]  de Marc Schoenauer,et al.  Conception optimale de structures , 2007 .