Signal revivals in pulsed Rydberg four-wave mixing in thermal ensembles

We present resonant four-wave mixing (FWM) signals involving a Rydberg state in a thermal Rb vapor. The dynamic behavior of the FWM signals exhibits revival peaks shortly after the incident pulse, which are due to coherent collective emission among all Doppler classes. The FWM signals have dephasing times up to 7 ns, and strongly depend on the excitation bandwidth to the Rydberg state. Our numerical simulations based on a four-level model including the whole Doppler broadened ensemble can describe the data quite well.

[1]  T. Pfau,et al.  Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor. , 2012, Physical review letters.

[2]  H. Fedder,et al.  Single-photon transistor mediated by interstate Rydberg interactions. , 2014, Physical review letters.

[3]  James P. Shaffer,et al.  Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells , 2010 .

[4]  J. Huennekens,et al.  Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line , 1996 .

[5]  T. Pfau,et al.  Four-wave mixing involving Rydberg states in thermal vapor , 2012 .

[6]  Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. , 2004, Physical review letters.

[7]  Katharina Schneider,et al.  Single-photon transistor using a Förster resonance. , 2014, Physical review letters.

[8]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[9]  M. Lukin,et al.  Photon-photon interactions via Rydberg blockade. , 2011, Physical review letters.

[10]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[11]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[12]  J. Pritchard,et al.  Storage and control of optical photons using Rydberg polaritons. , 2012, Physical review letters.

[13]  S. Montangero,et al.  Room temperature Rydberg Single Photon Source , 2012, 1212.2811.

[14]  Thomas G. Walker,et al.  Creating single-atom and single-photon sources from entangled atomic ensembles , 2002, quant-ph/0203080.

[15]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[16]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[17]  P. Gould,et al.  Local blockade of Rydberg excitation in an ultracold gas. , 2004, Physical review letters.

[18]  D. Matsukevich,et al.  Quantum telecommunication based on atomic cascade transitions. , 2006, Physical Review Letters.

[19]  T. Pfau,et al.  GHz Rabi flopping to Rydberg states in hot atomic vapor cells. , 2011, Physical review letters.

[20]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[21]  A K Mohapatra,et al.  Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. , 2007, Physical review letters.

[22]  S. Rolston,et al.  Four-wave mixing in the diamond configuration in an atomic vapor , 2009 .

[23]  T. Pfau,et al.  Motion-induced signal revival in pulsed Rydberg four-wave mixing beyond the frozen-gas limit , 2014, 1410.0897.

[24]  K. Overstreet,et al.  Tunable four-pass narrow spectral bandwidth amplifier for use at ∼508 nm , 2007 .

[25]  Y. O. Dudin,et al.  Strongly Interacting Rydberg Excitations of a Cold Atomic Gas , 2012, Science.

[26]  T. Pfau,et al.  Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor , 2015, Applied Physics B.