A 350-GHz high-resolution high-sensitivity passive video imaging system

We are developing a 350 GHz cryogenic passive video imaging system. This demonstration system uses 800 photon-noise-limited superconducting transition edge sensor bolometers. It will image a 1 m x 1 m area at a standoff distance of 16 m to a resolution of approximately 1 cm at video frame rates (20 frames per second). High spatial resolution is achieved by the use of an f/2.0 Cassegrain optical system with 1.3 m primary mirror. Preliminary testing of prototype detectors indicates that we can achieve a noise equivalent temperature difference (NETD) of 70 mK for the fully sampled 1 m × 1 m image at 20 frames per second.

[1]  M. Halpern,et al.  Instrument design and characterization of the Millimeter Bolometer Array Camera on the Atacama Cosmology Telescope , 2008, Astronomical Telescopes + Instrumentation.

[2]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[3]  Peter A. R. Ade,et al.  Thermal filtering for large aperture cryogenic detector arrays , 2006, SPIE Astronomical Telescopes + Instrumentation.

[4]  Torsten May,et al.  Safe VISITOR: visible, infrared, and terahertz object recognition for security screening application , 2009, Defense + Commercial Sensing.

[5]  M. Leivo,et al.  THz microbolometers for imaging applications , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[6]  E. Brown,et al.  Millimeter-wave, terahertz, and mid-infrared transmissionthrough common clothing , 2004 .

[7]  M. Supanich,et al.  A high capacity completely closed-cycle 250 mK 3He refrigeration system based on a pulse tube cooler , 2004 .

[8]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[9]  Mikko Leivo,et al.  Stand-off passive THz imaging at 8-meter stand-off distance: results from a 64-channel real-time imager , 2009, Defense + Commercial Sensing.

[10]  J. Zmuidzinas Thermal noise and correlations in photon detection. , 2003, Applied optics.

[11]  Peter A. R. Ade,et al.  An Optical System for Body Imaging from a Distance Using Near-TeraHertz Frequencies , 2008 .

[12]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  M. Halpern,et al.  Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-millimeter Astronomy , 2008 .

[14]  Peter A. R. Ade,et al.  SCUBA-2: a large-format submillimeter camera on the James Clerk Maxwell Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[16]  Kent D. Irwin,et al.  Digital readouts for large microwave low-temperature detector arrays , 2006 .

[17]  Christopher J. Mann First demonstration of a vehicle mounted 250GHz real time passive imager , 2009, Defense + Commercial Sensing.

[18]  R Appleby,et al.  Passive millimetre–wave imaging and how it differs from terahertz imaging , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  G. Hilton,et al.  Time-division superconducting quantum interference device multiplexer for transition-edge sensors , 2003 .

[20]  Arttu Luukanen,et al.  A superconducting antenna-coupled hot-spot microbolometer , 2003 .

[21]  Mikko Leivo,et al.  Real-time passive terahertz imaging system for standoff concealed weapons imaging , 2010, Defense + Commercial Sensing.

[22]  Adrian T. Lee,et al.  A superconducting bolometer with strong electrothermal feedback , 1996 .