Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics

[1]  Daniel S. Terry,et al.  GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision , 2022, Cell.

[2]  M. Ueda,et al.  Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias , 2022, Nature communications.

[3]  A. Inoue,et al.  Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism , 2021, Nature Chemical Biology.

[4]  C. Altenbach,et al.  An eight amino acid segment controls oligomerization and preferred conformation of the two non-visual arrestins. , 2020, Journal of molecular biology.

[5]  Naomi R. Latorraca,et al.  How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling , 2020, Cell.

[6]  J. Selent,et al.  Key phosphorylation sites in GPCRs orchestrate the contribution of β‐Arrestin 1 in ERK1/2 activation , 2020, EMBO reports.

[7]  A. Leslie,et al.  Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor , 2020, Nature.

[8]  Hideaki E. Kato,et al.  Structure of the Neurotensin Receptor 1 in complex with β-arrestin 1 , 2020, Nature.

[9]  Yong Zi Tan,et al.  Structure of an Endosomal Signaling GPCR–G Protein–β-arrestin Mega-Complex , 2019, Nature Structural & Molecular Biology.

[10]  Robert M. Williams,et al.  Perturbation of the interactions of calmodulin with GRK5 using a natural product chemical probe , 2019, Proceedings of the National Academy of Sciences.

[11]  Naomi R. Latorraca,et al.  Conformational transitions of a neurotensin receptor 1–Gi1 protein complex , 2019, Nature.

[12]  R. Proia,et al.  Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes , 2019, The Journal of experimental medicine.

[13]  M. von Zastrow,et al.  When trafficking and signaling mix: How subcellular location shapes G protein‐coupled receptor activation of heterotrimeric G proteins , 2019, Traffic.

[14]  O. Nureki,et al.  Crystal structures of human ETB receptor provide mechanistic insight into receptor activation and partial activation , 2018, Nature Communications.

[15]  G. Reyes-Cruz,et al.  S1P1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine , 2018, Bioscience reports.

[16]  G. Skiniotis,et al.  Development of an antibody fragment that stabilizes GPCR/G-protein complexes , 2018, Nature Communications.

[17]  C. Robinson,et al.  State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using In Vivo-Mimetic Membranes , 2018, bioRxiv.

[18]  A. Lesk,et al.  Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation , 2018, Nature Structural & Molecular Biology.

[19]  Andreas Plückthun,et al.  PIP2 stabilises active states of GPCRs and enhances the selectivity of G-protein coupling , 2018, Nature.

[20]  Naomi R. Latorraca,et al.  Molecular mechanism of GPCR-mediated arrestin activation , 2018, Nature.

[21]  A. Kruse,et al.  Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling , 2018, Proceedings of the National Academy of Sciences.

[22]  Naomi R. Latorraca,et al.  Catalytic activation of β-arrestin by GPCRs , 2018, Nature.

[23]  J. Wess,et al.  Lack of beta-arrestin signaling in the absence of active G proteins , 2018, Nature Communications.

[24]  B. Mouillac,et al.  V1b vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase , 2018, Traffic.

[25]  R. Sunahara,et al.  Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK , 2017, Science Signaling.

[26]  A. Shukla,et al.  Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation , 2017, Molecular biology of the cell.

[27]  B. Strunk,et al.  PI5P and PI(3,5)P2: Minor, but Essential Phosphoinositides. , 2017, Cell structure and function.

[28]  J. Lamerdin,et al.  Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis , 2017, Proceedings of the National Academy of Sciences.

[29]  J. Selent,et al.  C-edge loops of arrestin function as a membrane anchor , 2017, Nature Communications.

[30]  Stephanie J. Spielman,et al.  Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2 , 2017, The Journal of cell biology.

[31]  Ryan T. Strachan,et al.  GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling , 2016, Cell.

[32]  M. Bouvier,et al.  Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET , 2016, Nature Communications.

[33]  S. Nuber,et al.  β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle , 2016, Nature.

[34]  Brock F. Binkowski,et al.  NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. , 2016, ACS chemical biology.

[35]  Y. Peterson,et al.  The conformational signature of arrestin3 predicts its trafficking and signaling functions , 2016, Nature.

[36]  M. von Zastrow,et al.  β-arrestin drives MAP kinase signaling from clathrin-coated structures after GPCR dissociation , 2016, Nature Cell Biology.

[37]  Florent Baty,et al.  Dose-Response Analysis Using R , 2015, PLoS ONE.

[38]  T. Hughes,et al.  New DAG and cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories , 2015, Journal of biomolecular screening.

[39]  M. von Zastrow,et al.  Effects of endocytosis on receptor-mediated signaling. , 2015, Current opinion in cell biology.

[40]  Y. Namkung,et al.  Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK* , 2014, The Journal of Biological Chemistry.

[41]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[42]  T. Nakagawa,et al.  β1-Adrenergic Receptor Recycles Via a Membranous Organelle, Recycling Endosome, by Binding with Sorting Nexin27 , 2013, The Journal of Membrane Biology.

[43]  P. Scheerer,et al.  Crystal structure of pre-activated arrestin p44 , 2013, Nature.

[44]  A. Kruse,et al.  Structure of active β-arrestin1 bound to a G protein-coupled receptor phosphopeptide , 2013, Nature.

[45]  Jonathan R. Tomshine,et al.  Conformational biosensors reveal GPCR signalling from endosomes , 2013, Nature.

[46]  Alma L. Burlingame,et al.  Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation , 2013, Molecular Pharmacology.

[47]  S. Higashiyama,et al.  TGFα shedding assay: an accurate and versatile method for detecting GPCR activation , 2012, Nature Methods.

[48]  L. Hunyady,et al.  Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor , 2012, Journal of Cell Science.

[49]  L. Hunyady,et al.  Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor , 2012, Journal of Cell Science.

[50]  R. Lefkowitz,et al.  Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. , 2012, Annual review of pharmacology and toxicology.

[51]  T. Gardella,et al.  Retromer terminates the generation of cAMP by internalized PTH-receptors , 2011, Nature chemical biology.

[52]  H. Fu,et al.  How Does Arrestin Assemble MAPKs into a Signaling Complex?* , 2009, Journal of Biological Chemistry.

[53]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[54]  M. von Zastrow,et al.  Regulation of GPCRs by endocytic membrane trafficking and its potential implications. , 2008, Annual review of pharmacology and toxicology.

[55]  M. Kaksonen,et al.  PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization , 2007, The Journal of cell biology.

[56]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[57]  W. Smith,et al.  Dynamics of Arrestin-Rhodopsin Interactions , 2006, Journal of Biological Chemistry.

[58]  W. Smith,et al.  Dynamics of Arrestin-Rhodopsin Interactions , 2005, Journal of Biological Chemistry.

[59]  M. Matteis,et al.  PI-loting membrane traffic , 2004, Nature Cell Biology.

[60]  Jian-guo Li,et al.  Ezrin-Radixin-Moesin-binding Phosphoprotein-50/Na+/H+ Exchanger Regulatory Factor (EBP50/NHERF) Blocks U50,488H-induced Down-regulation of the Human κ Opioid Receptor by Enhancing Its Recycling Rate* , 2002, The Journal of Biological Chemistry.

[61]  P. Sigler,et al.  Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. , 2001, Structure.

[62]  M. Caron,et al.  Molecular Determinants Underlying the Formation of Stable Intracellular G Protein-coupled Receptor-β-Arrestin Complexes after Receptor Endocytosis* , 2001, The Journal of Biological Chemistry.

[63]  M. Caron,et al.  Differential Affinities of Visual Arrestin, βArrestin1, and βArrestin2 for G Protein-coupled Receptors Delineate Two Major Classes of Receptors* , 2000, The Journal of Biological Chemistry.

[64]  L. Devi,et al.  Recycling and resensitization of delta opioid receptors. , 2000, DNA and cell biology.

[65]  R. Mullins,et al.  β-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2 , 2000, The Journal of cell biology.

[66]  M. Caron,et al.  Association of β-Arrestin with G Protein-coupled Receptors during Clathrin-mediated Endocytosis Dictates the Profile of Receptor Resensitization* , 1999, The Journal of Biological Chemistry.

[67]  N. Bunnett,et al.  Trafficking of Proteinase-activated Receptor-2 and β-Arrestin-1 Tagged with Green Fluorescent Protein , 1999, The Journal of Biological Chemistry.

[68]  M. Caron,et al.  Cellular Trafficking of G Protein-coupled Receptor/β-Arrestin Endocytic Complexes* , 1999, The Journal of Biological Chemistry.

[69]  J. Falck,et al.  Arrestin function in G protein‐coupled receptor endocytosis requires phosphoinositide binding , 1999, The EMBO journal.

[70]  H. Sadeghi,et al.  Transient Phosphorylation of the V1a Vasopressin Receptor* , 1998, The Journal of Biological Chemistry.

[71]  H. Sadeghi,et al.  A serine cluster prevents recycling of the V2 vasopressin receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Julie A. Pitcher,et al.  The Role of Sequestration in G Protein-coupled Receptor Resensitization , 1997, The Journal of Biological Chemistry.

[73]  D. Devost,et al.  Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer. , 2019, Methods in molecular biology.

[74]  S. Shenoy,et al.  GPCR desensitization: Acute and prolonged phases. , 2018, Cellular Signalling.

[75]  J. Benovic,et al.  G protein-coupled receptor kinases: Past, present and future. , 2018, Cellular signalling.

[76]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[77]  N. Bunnett,et al.  Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. beta-Arrestin-dependent endocytosis of a proteinase receptor. , 1999, The Journal of biological chemistry.