Geometric conditions for tangent continuity of interpolatory planar subdivision curves
暂无分享,去创建一个
Nira Dyn | Kai Hormann | N. Dyn | K. Hormann
[1] C. Micchelli,et al. Stationary Subdivision , 1991 .
[2] Nira Dyn,et al. Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..
[3] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[4] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[5] Bert Jüttler,et al. A non-linear circle-preserving subdivision scheme , 2007, Adv. Comput. Math..
[6] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[7] Neil A. Dodgson,et al. A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .
[8] U. Reif,et al. C1-continuity of the generalized four-point scheme , 2009 .
[9] Nira Dyn,et al. Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.
[10] David Levin,et al. Using Laurent polynomial representation for the analysis of non‐uniform binary subdivision schemes , 1999, Adv. Comput. Math..
[11] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[12] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[13] Reporte De Investigación,et al. CURVE SUBDIVISION WITH ARC-LENGTH CONTROL , 2009 .
[14] Nira Dyn,et al. Four-point curve subdivision based on iterated chordal and centripetal parameterizations , 2009, Comput. Aided Geom. Des..
[15] Guozhao Wang,et al. Incenter subdivision scheme for curve interpolation , 2010, Comput. Aided Geom. Des..