An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity

This paper presents a combined adaptive finite element method with an iterative algebraic eigenvalue solver for a symmetric eigenvalue problem of asymptotic quasi-optimal computational complexity. The analysis is based on a direct approach for eigenvalue problems and allows the use of higher-order conforming finite element spaces with fixed polynomial degree. The asymptotic quasi-optimal adaptive finite element eigenvalue solver (AFEMES) involves a proper termination criterion for the algebraic eigenvalue solver and does not need any coarsening. Numerical evidence illustrates the asymptotic quasi-optimal computational complexity in 2 and 3 dimensions.

[1]  Volker Mehrmann,et al.  Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..

[2]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[3]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[4]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  Stefan A. Sauter,et al.  hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p , 2010, SIAM J. Numer. Anal..

[9]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[10]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[11]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[12]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[13]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[14]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[15]  Susanne C. Brenner,et al.  Convergence of the multigrid V-cycle algorithm for second-order boundary value problems without full elliptic regularity , 2002, Math. Comput..

[16]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[17]  Wolfgang Dahmen,et al.  Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.

[18]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[19]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[20]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[21]  Pedro Morin,et al.  Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .

[22]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[23]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[24]  Susanne C. Brenner,et al.  Smoothers, mesh dependent norms, interpolation and multigrid , 2002 .

[25]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[27]  Klaus Neymeyr,et al.  A posteriori error estimation for elliptic eigenproblems , 2002, Numer. Linear Algebra Appl..