Atomistic calculations of nanoscale interface behavior in FCC metals

[1]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[2]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[3]  Y. Ishida,et al.  Burgers vectors of boundary dislocations in ordered grain boundaries of cubic metals , 1973 .

[4]  H. V. Swygenhoven,et al.  Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni , 1999 .

[5]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[6]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[7]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[8]  V. Tomar,et al.  Bounds for element size in a variable stiffness cohesive finite element model , 2004 .

[9]  N. Chandra,et al.  Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models , 2003 .

[10]  R. A. Johnson,et al.  Relationship between two-body interatomic potentials in a lattice model and elastic constants. II , 1972 .

[11]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[12]  Sidney Yip,et al.  Atomistic Simulations of Materials Fracture and the Link between Atomic and Continuum Length Scales , 2005 .

[13]  Akhtar S. Khan,et al.  Continuum theory of plasticity , 1995 .

[14]  K. Kaski,et al.  MOLECULAR-DYNAMICS STUDY OF COPPER WITH DEFECTS UNDER STRAIN , 1998 .

[15]  Peter M. Derlet,et al.  Length scale effects in the simulation of deformation properties of nanocrystalline metals , 2002 .

[16]  S. Phillpot,et al.  Deformation twinning in nanocrystalline Al by molecular-dynamics simulation , 2002 .

[17]  Murray S. Daw,et al.  High-resolution transmission electron microscopy of grain boundaries in aluminum and correlation with atomistic calculations , 1992 .

[18]  J. Rice,et al.  PARADOXES IN THE APPLICATION OF THERMODYNAMICS TO STRAINED SOLIDS. , 1969 .

[19]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[20]  William G. Hoover,et al.  Microscopic fracture studies in the two-dimensional triangular lattice , 1976 .

[21]  Merkle,et al.  Grain-boundary dissociation by the emission of stacking faults. , 1996, Physical review. B, Condensed matter.

[22]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[23]  J. E. Sinclair The influence of the interatomic force law and of kinks on the propagation of brittle cracks , 1975 .

[24]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[25]  G. Palumbo,et al.  Structure-dependence of intergranular corrosion in high purity nickel , 1990 .

[26]  R. Selvam,et al.  Atomistic simulation of grain boundary energetics – Effects of dopants , 2005 .

[27]  Anders E. Carlsson,et al.  Beyond Pair Potentials in Elemental Transition Metals and Semiconductors , 1990 .

[28]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[29]  Steven J. Plimpton,et al.  Computational nanoscale plasticity simulations using embedded atom potentials , 2001 .

[30]  Mark F. Horstemeyer,et al.  Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses , 1999 .

[31]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[32]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[33]  M. Zhou,et al.  Finite element analysis of micromechanical failure modes in a heterogeneous ceramic material system , 2000 .

[34]  J. Howe Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces , 1997 .

[35]  W. King,et al.  Analysis of grain boundary networks and their evolution during grain boundary engineering , 2003 .

[36]  J.C.M. Li Disclination model of high angle grain boundaries , 1972 .

[37]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[38]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[39]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[40]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[41]  J.C.M. Li,et al.  Energy of grain boundaries between cusp misorientations , 1975 .

[42]  H. V. Swygenhoven,et al.  PLASTIC BEHAVIOR OF NANOPHASE METALS STUDIED BY MOLECULAR DYNAMICS , 1998 .

[43]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[44]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[45]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[46]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[47]  John R. Smith,et al.  Universal behavior in ideal slip , 1991 .

[48]  A. Needleman,et al.  The effect of plasticity on dynamic crack growth across an interface , 1998 .

[49]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .

[50]  Anthony G. Evans,et al.  Interface adhesion: effects of plasticity and segregation , 1999 .

[51]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[52]  Alfredo Caro,et al.  A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation , 2001 .

[53]  P. C. Gehlen,et al.  Atomic simulation of the dislocation core structure and Peierls stress in alkali halide , 1976 .

[54]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[55]  M. Dao,et al.  Non-Schmid effects and localized plastic flow in intermetallic alloys , 1993 .

[56]  John Arents,et al.  Thermodynamics of solids , 1962 .

[57]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[58]  Peter Gumbsch,et al.  An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling , 1995 .

[59]  V. Vítek,et al.  On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[60]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[61]  James F. Lutsko,et al.  Stress and elastic constants in anisotropic solids: Molecular dynamics techniques , 1988 .

[62]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[63]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .

[64]  J. C. Hamilton,et al.  Surface step effects on nanoindentation. , 2001, Physical review letters.

[65]  H. Grimmer,et al.  Dislocation Burgers vectors for cubic metal grain boundaries , 1974 .

[66]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[67]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[68]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[69]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[70]  V. Vítek,et al.  On the structure of tilt grain boundaries in cubic metals. III. Generalizations of the structural study and implications for the properties of grain boundaries , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[71]  H. V. Swygenhoven,et al.  Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance , 2004 .

[72]  H. V. Swygenhoven,et al.  COMPETING PLASTIC DEFORMATION MECHANISMS IN NANOPHASE METALS , 1999 .

[73]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[74]  Daw Model of metallic cohesion: The embedded-atom method. , 1989, Physical review. B, Condensed matter.

[75]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[76]  Denis J. Evans,et al.  Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow , 1983 .

[77]  Gregory A. Voth,et al.  Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics , 1997 .

[78]  Valerie Randle,et al.  The measurement of grain boundary geometry , 1993 .

[79]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[80]  A. Voter,et al.  Three-dimensional fracture via large-scale molecular dynamics , 1998 .

[81]  M. Baskes,et al.  An atomistic study of the strength of an extended-dislocation barrier , 1998 .

[82]  B. Adams,et al.  Interface Cavitation Damage in Polycrystalline Copper , 1992 .

[83]  W. Hosford The mechanics of crystals and textured polycrystals , 1993 .

[84]  C. Qian,et al.  Molecular dynamics simulation of dislocation intersections in aluminum , 2003 .

[85]  J. Nørskov Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the3dmetals , 1982 .

[86]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[87]  H. Van Swygenhoven,et al.  Atomistic simulation of dislocation emission in nanosized grain boundaries , 2003 .

[88]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[89]  Ronald E. Miller,et al.  Critical analysis of local constitutive models for slip and decohesion , 1996 .

[90]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[91]  Ayrat A. Nazarov,et al.  Disclination-structural unit model of grain boundaries , 1989 .

[92]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[93]  Min Zhou,et al.  Micromechanical Modeling of Mixed-Mode Crack Growth in Ceramic Composites , 1999 .

[94]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[95]  David L. McDowell,et al.  Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations , 2004 .

[96]  Huajian Gao,et al.  Generalized stacking fault energies for embedded atom FCC metals , 2000 .

[97]  R. Ohtani,et al.  Atomic simulation on deformation and fracture of nano-single crystal of nickel in tension , 1997 .

[98]  Tadao Watanabe,et al.  Grain boundary strengthening associated with Σ = 9 near-coincidence boundary in 〈1010〉 twist zinc bicrystals at high temperatures , 1991 .

[99]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[100]  V. Gertsman,et al.  Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning , 1995 .

[101]  B. Adams,et al.  Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750 , 1996 .

[102]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[103]  Mark A. Duchaineau,et al.  Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure , 2004 .

[104]  D. Wolf,et al.  Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation , 2003 .

[105]  Takeshi Yamamoto Comment on: Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics , 2006 .

[106]  Duesbery,et al.  Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition. , 1993, Physical review letters.

[107]  A. Sutton,et al.  Rules for combining structural units of grain boundaries , 1990 .

[108]  V. Randle,et al.  The Role of the Coincidence Site Lattice in Grain Boundary Engineering , 1996 .

[109]  Mark F. Horstemeyer,et al.  A large deformation atomistic study examining crystal orientation effects on the stress–strain relationship , 2002 .

[110]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[111]  Min Zhou,et al.  A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[112]  Honglai Tan,et al.  Evolution of crack tip process zones , 1994 .

[113]  M. J. Stott,et al.  Quasiatoms: An approach to atoms in nonuniform electronic systems , 1980 .

[114]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[115]  R. Peierls The size of a dislocation , 1940 .

[116]  John R. Rice,et al.  Some further results of J-integral analysis and estimates. , 1973 .

[117]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[118]  Jacobsen,et al.  Interatomic interactions in the effective-medium theory. , 1987, Physical review. B, Condensed matter.

[119]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[120]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[121]  Cyril Stanley Smith,et al.  A Search for Structure: Selected Essays on Science, Art, and History , 1982 .

[122]  J. Molinari,et al.  Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper , 2004 .

[123]  A. Cemal Eringen,et al.  A unified theory of thermomechanical materials , 1966 .

[124]  M. Mehl,et al.  Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals , 2000 .

[125]  P. C. Gehlen,et al.  Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling , 1978 .

[126]  Paul Steinmann,et al.  Aspects of non-associated single crystal plasticity: Influence of non-schmid effects and localization analysis , 1998 .

[127]  C. B. Carter,et al.  On the stacking-fault energies of copper alloys , 1977 .

[128]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[129]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[130]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[131]  Mark F. Horstemeyer,et al.  Atomistic simulations on the tensile debonding of an aluminum-silicon interface , 2000 .

[132]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[133]  D. Brandon,et al.  The structure of high-angle grain boundaries , 1966 .

[134]  Robert E. Rudd,et al.  Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation , 2002 .

[135]  J. Bassani,et al.  Non-Schmid yield behavior in single crystals , 1992 .

[136]  T. Watanabe,et al.  An approach to grain boundary design for strong and ductile polycrystals. , 1984 .

[137]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[138]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[139]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[140]  P. Dang,et al.  Atomistic simulation of grain boundary sliding and migration , 1999 .

[141]  Johannes Weertman,et al.  Disclination grain boundary model with plastic deformation by dislocations , 1995 .

[142]  D. Seidman,et al.  〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies , 1996 .

[143]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[144]  D. Srolovitz,et al.  Mobility of Σ5 tilt grain boundaries: Inclination dependence , 2005 .

[145]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[146]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[147]  M. Cross,et al.  A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate , 1998 .

[148]  D. McDowell,et al.  Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces , 2005 .

[149]  John W. Hutchinson,et al.  Models of Interface Separation Accompanied by Plastic Dissipation at Multiple Scales , 1999 .

[150]  D. Wolf,et al.  Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries , 1990 .

[151]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[152]  Göran Wahnström,et al.  Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles , 1998 .

[153]  David L. McDowell,et al.  Materials design: a useful research focus for inelastic behavior of structural metals , 2001 .

[154]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[155]  Wing Kam Liu,et al.  Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels , 2004 .

[156]  V. Vitek,et al.  Grain boundaries as heterogeneous systems: atomic and continuum elastic properties , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[157]  H. V. Swygenhoven,et al.  The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics computer simulation , 1999 .

[158]  A. Needleman Micromechanical modelling of interfacial decohesion , 1992 .

[159]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[160]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[161]  L. Lim Surface intergranular cracking in large strain fatigue , 1987 .

[162]  Su Hao,et al.  A hierarchical multi-physics model for design of high toughness steels , 2003 .

[163]  James S. Stolken,et al.  Differences in deformation processes in nanocrystalline nickel with low- and high-angle boundaries from atomistic simulations , 2004 .

[164]  S. Tsurekawa,et al.  The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering , 1999 .

[165]  T. Byun On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels , 2003 .

[166]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[167]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[168]  K. Jacobsen,et al.  Simulations of intergranular fracture in nanocrystalline molybdenum , 2004 .

[169]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[170]  Tadao Watanabe The impact of grain boundary character distribution on fracture in polycrystals , 1994 .

[171]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[172]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[173]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[174]  A. Sutton,et al.  Overview no. 61 On geometric criteria for low interfacial energy , 1987 .

[175]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[176]  Donald W. Brenner,et al.  On the disclination-structural unit model of grain boundaries , 2000 .

[177]  A. Romanov Screened disclinations in solids , 1993 .

[178]  J. E. Sinclair Improved Atomistic Model of a bcc Dislocation Core , 1971 .