Wasserstein Barycenters over Riemannian manifolds
暂无分享,去创建一个
[1] R. Bishop,et al. Geometry of Manifolds , 1964 .
[2] Richard A. Vitale,et al. The Brunn-Minkowski inequality for random sets , 1990 .
[3] M. Émery,et al. Sur le barycentre d'une probabilité dans une variété , 1991 .
[4] Svetlozar T. Rachev,et al. Maximum submatrix traces for positive definite matrices , 1993 .
[5] M. Knott,et al. On a generalization of cyclic monotonicity and distances among random vectors , 1994 .
[6] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[7] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[8] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[9] L. Rüschendorf,et al. On Optimal Multivariate Couplings , 1997 .
[10] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[11] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[12] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[13] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[14] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[15] Frank Morgan,et al. Hexagonal Economic Regions Solve the Location Problem , 2002, Am. Math. Mon..
[16] Karl-Theodor Sturm,et al. Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .
[17] C. Villani. Topics in Optimal Transportation , 2003 .
[18] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[19] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[20] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[21] S. Bianchini. On the Euler-Lagrange Equation for a Variational Problem , 2006 .
[22] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[23] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[24] N. Trudinger,et al. On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.
[25] R. McCann,et al. Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.
[26] Existence and uniqueness of optimal maps on Alexandrov spaces , 2007, 0705.0437.
[27] Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds , 2007, 0709.1653.
[28] Robert J. McCann,et al. Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular) , 2008, 0806.0351.
[29] A. Figalli,et al. Absolute continuity of Wasserstein geodesics in the Heisenberg group , 2008 .
[30] C. Villani. Optimal Transport: Old and New , 2008 .
[31] Filippo Santambrogio. Absolute continuity and summability of transport densities: simpler proofs and new estimates , 2009 .
[32] G. Loeper. On the regularity of solutions of optimal transportation problems , 2009 .
[33] A. Figalli,et al. Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .
[34] Locally nearly spherical surfaces are almost-positively $c$-curved , 2010, 1009.3586.
[35] G. Carlier,et al. Matching for teams , 2010 .
[36] S. Bianchini,et al. On the Euler–Lagrange equation for a variational problem: the general case II , 2010 .
[37] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[38] Alessio Figalli,et al. When is multidimensional screening a convex program? , 2009, J. Econ. Theory.
[39] Julien Rabin,et al. Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.
[40] G. Loeper. Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna , 2013, 1301.6229.
[41] Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions , 2012, 1210.7372.
[42] Brendan Pass. Optimal transportation with infinitely many marginals , 2012, 1206.5515.
[43] Jérémie Bigot,et al. Consistent estimation of a population barycenter in the Wasserstein space , 2013 .
[44] Brendan Pass,et al. Multi-marginal optimal transport on Riemannian manifolds , 2013, 1303.6251.
[45] Philippe Delanoë,et al. Positively Curved Riemannian Locally Symmetric Spaces are Positively Squared Distance Curved , 2013, Canadian Journal of Mathematics.
[46] K. Kuwae. Jensen’s inequality on convex spaces , 2014 .
[47] Brendan Pass. Multi-marginal optimal transport: theory and applications , 2014, 1406.0026.
[48] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .