Remote Sensing with Commutable Monolithic Laser and Detector

The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip. The differentiation between emitter and detector is eliminated, which enables mutual commutation. Proof-of-principle gas measurements with a limit of detection below 400 ppm are demonstrated. This concept enables a crucial miniaturization of sensing devices.

[1]  G. Strasser,et al.  High performance bi-functional quantum cascade laser and detector , 2015 .

[2]  Werner Schrenk,et al.  The influence of whispering gallery modes on the far field of ring lasers , 2015, Scientific reports.

[3]  Gerard Wysocki,et al.  QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum. , 2007, Optics express.

[4]  M. Ibanescu,et al.  Quantum cascade detector utilizing the diagonal-transition scheme for high quality cavities. , 2015, Optics express.

[5]  Gottfried Strasser,et al.  Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy. , 2014, Optics express.

[6]  Federico Capasso,et al.  Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.

[7]  Esther Baumann,et al.  Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry , 2010, OPTO.

[8]  Werner Schrenk,et al.  Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures , 2014, Nature Communications.

[9]  Mattias Beck,et al.  Quantum-cascade-laser structures as photodetectors , 2002 .

[10]  Claire F. Gmachl,et al.  High performance, room temperature, broadband II-VI quantum cascade detector , 2015 .

[11]  S. Höfling,et al.  Widely tunable quantum cascade lasers with coupled cavities for gas detection , 2010 .

[12]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[13]  Jerome Faist,et al.  Dual-comb spectroscopy based on quantum-cascade-laser frequency combs , 2014, Nature Communications.

[14]  Martin Walther,et al.  Photovoltaic quantum well infrared photodetectors: The four-zone scheme , 1997 .

[15]  Edmund H. Linfield,et al.  Photonic quasi-crystal terahertz lasers , 2014, Nature Communications.

[16]  Werner Schrenk,et al.  Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing , 2016, Scientific Reports.

[17]  H. Schenk,et al.  Widely tunable quantum cascade lasers for spectroscopic sensing , 2015, SPIE OPTO.

[18]  A. Tredicucci,et al.  Hyperuniform disordered terahertz quantum cascade laser , 2016, Scientific Reports.

[19]  Werner Schrenk,et al.  Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers , 2012 .

[20]  Grant A. D. Ritchie,et al.  Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser , 2009 .

[21]  Werner Schrenk,et al.  A bi-functional quantum cascade device for same-frequency lasing and detection , 2012 .

[22]  K. Kohler,et al.  Quantum Cascade Detectors , 2009, IEEE Journal of Quantum Electronics.

[23]  Werner Schrenk,et al.  Plasmonic lens enhanced mid-infrared quantum cascade detector , 2014 .

[24]  Dan Botez,et al.  High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode , 2016 .

[25]  Manijeh Razeghi,et al.  High power, continuous wave, quantum cascade ring laser , 2011 .

[26]  Werner Schrenk,et al.  Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. , 2016, The Analyst.

[27]  F. Julien,et al.  First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence. , 2014, Optics Express.

[28]  E. Gornik,et al.  Analysis of TM-polarized DFB laser structures with metal surface gratings , 2000, IEEE Journal of Quantum Electronics.

[29]  Gerard Wysocki,et al.  Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. , 2010, Optics express.