Convergence Analysis of Galerkin POD for linear second order evolution equations

Abstract. In this paper, we investigate the proper orthogonal decomposition (POD) discretization method for linear second order evolution equations. We present error estimates for two different choices of snapshot sets, one consisting of solution snapshots only and one consisting of solution snapshots and their derivatives up to second order. We show that the results of [Numer. Math., 90 (2001), pp. 117–148] for parabolic equations can be extended to linear second order evolution equations, and that the derivative snapshot POD method behaves better than the classical one for small time steps. Numerical comparisons of the different approaches are presented, illustrating the theoretical results.

[1]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[2]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[4]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[5]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[6]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[7]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[8]  Kenji Fujimoto,et al.  Model Reduction of Nonlinear Differential-Algebraic Equations , 2007 .

[9]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[10]  M. Meyer Reduktionsmethoden zur Simulation des aeroelastischen Verhaltens von Windkraftanlagen , 2002 .

[11]  Discrete analogues of a Gronwall-type inequality , 1996 .

[12]  Alexander Schulze,et al.  Model reduction techniques for frequency averaging in radiative heat transfer , 2007, J. Comput. Phys..

[13]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[14]  Thomas Voss,et al.  Model Reduction for Nonlinear Differential-Algebraic Equations , 2007 .

[15]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .