On Infrasound Standards, Part 1 Time, Frequency, and Energy Scaling

A standardized, self-similar, multiresolution algorithm is developed for scaling infrasonic signal time, frequency, and power within the framework of fractional octave bands. This work extends accepted fractional octave band schemas to 0.001 Hz (1000 s periods) to facilitate the analysis of broadband signals as well as the deep acoustic-gravity and Lamb waves captured by the global infrasound network. The Infrasonic Energy, Nth Octave (INFERNO) multiresolutionEnergy Estimator is applied to computing the total acoustic energy of the Russian meteor signature recorded in the 45mHz-9 Hz frequency band by IMS array 131KZ, Kazakhstan.

[1]  Milton A. Garces,et al.  EVALUATION OF INFRASONIC DETECTION ALGORITHMS , 2002 .

[2]  Dennis Gabor,et al.  Theory of communication , 1946 .

[3]  Milton Garces,et al.  Traveltimes for infrasonic waves propagating in a stratified atmosphere , 1998 .

[4]  Michael A. H. Hedlin,et al.  Detection of gravity waves across the USArray: A case study , 2014 .

[5]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[6]  D. Drob,et al.  INFRASONIC SOURCE LOCATION OF THE APRIL 23, 2001, BOLIDE EVENT , 2001 .

[7]  Julien Marty,et al.  Using the International Monitoring System infrasound network to study gravity waves , 2010 .

[8]  C. Burrus,et al.  Array Signal Processing , 1989 .

[9]  L. Ceranna,et al.  Coherent ambient infrasound recorded by the International Monitoring System , 2012 .

[10]  Barry Truax,et al.  The World Soundscape Project's Handbook For Acoustic Ecology , 1978 .

[11]  Darren M. Hart,et al.  Component evaluation testing and analysis algorithms. , 2011 .

[12]  W. Tempest Infrasound and low frequency vibration , 1976 .

[13]  D. Fee,et al.  Modeling Volcanic Processes: Volcano acoustics , 2013 .

[14]  Justin E. Stopa,et al.  Patterns and cycles in the Climate Forecast System Reanalysis wind and wave data , 2013 .

[15]  Jelle Assink,et al.  Overview of the 2009 and 2011 Sayarim Infrasound Calibration Experiments , 2013 .

[16]  Lars Ceranna,et al.  Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network , 2011 .

[17]  H. Saunders,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .

[18]  A. Pichon,et al.  Infrasound Event Detection Using the Progressive Multi-Channel Correlation Algorithm , 2008 .

[19]  Douglas R. Christie,et al.  The IMS Infrasound Network: Design and Establishment of Infrasound Stations , 2010 .

[20]  Manochehr Bahavar,et al.  Ambient infrasound noise , 2005 .

[21]  Mark K. Prior,et al.  The IDC Seismic, Hydroacoustic and Infrasound Global Low and High Noise Models , 2014, Pure and Applied Geophysics.

[22]  H. Bass,et al.  Forensic studies of infrasound from massive hypersonic sources , 2004 .

[23]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[24]  W. Morii,et al.  Acoustic‐gravity waves from the source region of the 2011 great Tohoku earthquake (Mw = 9.0) , 2013 .

[25]  M. Garces,et al.  Ray Tracing in an Inhomogeneous Atmosphere with Winds , 2008 .

[26]  Christoph Pilger,et al.  The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors , 2013 .

[27]  D. E. Davies,et al.  Array signal processing , 1983 .

[28]  Alain Hauchecorne,et al.  Infrasound monitoring for atmospheric studies , 2009 .

[29]  J. Perrin,et al.  IMADYN : A field campaign to evaluate the potential of infrasound monitoring for atmospheric dynamics studies , 2010 .

[30]  Danièle Dubois,et al.  CATEGORIES FOR SOUNDSCAPE : TOWARD A HYBRID CLASSIFICATION , 2010 .

[31]  Thomas S. Huang,et al.  Cognitive Information Processing , 1968 .

[32]  Diogo Bolster,et al.  Dynamic similarity, the dimensionless science , 2011 .