An optimal filter based MPC for systems with arbitrary disturbances

Abstract In this study, a linear model predictive control (MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance orejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.

[1]  Kenneth R. Muske,et al.  Disturbance model design for linear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[2]  B. Wayne Bequette,et al.  Non‐Linear Model Predictive Control: A Personal Retrospective , 2007 .

[3]  James B. Rawlings,et al.  Model predictive control with linear models , 1993 .

[4]  Zhijiang Shao,et al.  Model Predictive Control for Hammerstein Systems with Unknown Input Nonlinearities , 2014 .

[5]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems , 2007, Autom..

[6]  Mohamed Darouach,et al.  Unbiased minimum variance estimation for systems with unknown exogenous inputs , 1997, Autom..

[7]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough , 2007, Autom..

[8]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .

[9]  Alberto Bemporad,et al.  Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control , 2007, IEEE Transactions on Automatic Control.

[10]  Peter K. Kitanidis,et al.  Unbiased minimum-variance linear state estimation , 1987, Autom..

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  S. Skogestad DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .

[13]  Jerry L. Prince,et al.  On the optimality of recursive unbiased state estimation with unknown inputs , 2000, Autom..

[14]  James B. Rawlings,et al.  Estimation of the disturbance structure from data using semidefinite programming and optimal weighting , 2009, Autom..

[15]  F. G. Shinskey,et al.  Feedback controllers for the process industries , 1994 .

[16]  Manfred Morari,et al.  Nonlinear offset-free model predictive control , 2012, Autom..

[17]  Eric C. Kerrigan,et al.  Offset‐free receding horizon control of constrained linear systems , 2005 .

[18]  Zuhua Xu,et al.  Input and state estimation for linear systems with a rank-deficient direct feedthrough matrix. , 2015, ISA transactions.

[19]  Huazhen Fang,et al.  On the asymptotic stability of minimum-variance unbiased input and state estimation , 2012, Autom..

[20]  Sigurd Skogestad,et al.  Limitations of dynamic matrix control , 1995 .

[21]  Zuhua Xu,et al.  A multi-iteration pseudo-linear regression method and an adaptive disturbance model for MPC , 2010 .

[22]  James B. Rawlings,et al.  Achieving state estimation equivalence for misassigned disturbances in offset‐free model predictive control , 2009 .

[23]  Donghua Zhou,et al.  Unbiased minimum-variance state estimation for linear systems with unknown input , 2009, Autom..

[24]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[25]  Gabriele Pannocchia,et al.  Disturbance models for offset‐free model‐predictive control , 2003 .