Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom.

Usually, the hyperparallel quantum computation can speed up quantum computing, reduce the quantum resource consumed largely, resist to noise, and simplify the storage of quantum information. Here, we present the first scheme for the self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom of photon systems simultaneously. It can prevent bit-flip errors from happening with an imperfect nonlinear interaction in the nearly realistic condition. We give the way to design the universal hyperparallel photonic quantum controlled-NOT (CNOT) gate on a two-photon system, resorting to the nonlinear interaction between the circularly polarized photon and the electron spin in the quantum dot in a double-sided microcavity system, by taking the imperfect interaction in the nearly realistic condition into account. Its self-error-corrected pattern prevents the bit-flip errors from happening in the hyperparallel quantum CNOT gate, guarantees the robust fidelity, and relaxes the requirement for its experiment. Meanwhile, this scheme works in a failure-heralded way. Also, we generalize this approach to achieve the self-error-corrected hyperparallel quantum CNOTN gate working on a multiple-photon system. These good features make this scheme more useful in the photonic quantum computation and quantum communication in the future.

[1]  Yan Xia,et al.  Two-photon phase gate with linear optical elements and atom–cavity system , 2016, Quantum Inf. Process..

[2]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[3]  Gui-Lu Long,et al.  Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities , 2016 .

[4]  Franco Nori,et al.  Heralded quantum controlled- phase gates with dissipative dynamics in macroscopically distant resonators , 2016, 1608.04195.

[5]  Shi Hu,et al.  Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system , 2016, Quantum Inf. Process..

[6]  W. F. Balthazar,et al.  Tripartite nonseparability in classical optics. , 2015, Optics letters.

[7]  Fuguo Deng,et al.  Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities , 2015, 1511.00087.

[8]  Giacomo Mauro D'Ariano,et al.  Functional quantum computing: An optical approach , 2016 .

[9]  Giovanni Milione,et al.  Using the nonseparability of vector beams to encode information for optical communication. , 2015, Optics letters.

[10]  Girish S. Agarwal,et al.  Entanglement of polarization and orbital angular momentum , 2015 .

[11]  Yao Lu,et al.  Experimental digital quantum simulation of temporal–spatial dynamics of interacting fermion system , 2015 .

[12]  J. Borregaard,et al.  Heralded Quantum Gates with Integrated Error Detection in Optical Cavities , 2015, 1501.00956.

[13]  Fu-Guo Deng,et al.  Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime , 2014, 1411.0274.

[14]  Kui Liu,et al.  Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator. , 2014, Physical review letters.

[15]  Shi-Biao Zheng,et al.  Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. , 2014, Optics letters.

[16]  Shou Zhang,et al.  One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. , 2014, Optics letters.

[17]  Fu-Guo Deng,et al.  Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. , 2014, Optics express.

[18]  Chuan Wang,et al.  Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities , 2014 .

[19]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[20]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[21]  C. E. R. Souza,et al.  Vector vortex implementation of a quantum game , 2013 .

[22]  Fu-Guo Deng,et al.  Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities , 2013, 1310.0197.

[23]  Chuan Wang,et al.  Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. , 2013, Optics express.

[24]  Wei Qin,et al.  NMR realization of adiabatic quantum algorithms for the modified Simon problem , 2013 .

[25]  Fu-Guo Deng,et al.  Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. , 2013, Optics express.

[26]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[27]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[28]  L. Aolita,et al.  Robust-fidelity atom-photon entangling gates in the weak-coupling regime. , 2012, Physical review letters.

[29]  N. A. Wasley,et al.  Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning , 2012 .

[30]  Daniel A. Lidar,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[31]  Yu-Ping Huang,et al.  Ultrafast switching of photonic entanglement , 2012, IEEE Photonics Conference 2012.

[32]  Cristian Bonato,et al.  Strain tuning of quantum dot optical transitions via laser-induced surface defects , 2011, 1107.2486.

[33]  Joseph B. Altepeter,et al.  All-optical switching of photonic entanglement , 2011, 1106.5738.

[34]  Masahito Ueda,et al.  Projective measurement of a single nuclear spin qubit by using two-mode cavity QED. , 2010, Physical review letters.

[35]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[36]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[37]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[38]  Franco Nori,et al.  Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity , 2009, 1101.0205.

[39]  Antonio Z. Khoury,et al.  Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum. , 2009 .

[40]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[41]  Yan Xia,et al.  Quantum gate operations using atomic qubits through cavity input-output process , 2009 .

[42]  Guang-Can Guo,et al.  Robust and fast geometric quantum computation with multiqubit gates in cavity QED , 2009 .

[43]  C. H. Oh,et al.  Quantum information processing with a single photon by input-output process regarding low-Q cavities , 2009, 0902.1372.

[44]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[45]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[46]  Giuseppe Vallone,et al.  Multipath entanglement of two photons. , 2008, Physical review letters.

[47]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[48]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[49]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[50]  Guang-Can Guo,et al.  Methods for a linear optical quantum Fredkin gate , 2008, 0804.0992.

[51]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[52]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[53]  E. L. Hu,et al.  Tuning photonic nanocavities by atomic force microscope nano-oxidation , 2006 .

[54]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[55]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[56]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[57]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[58]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[59]  N. Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[60]  L. Vandersypen,et al.  Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. , 2004, Physical Review Letters.

[61]  Marco Barbieri,et al.  Realization of hyperentangled two-photon states , 2005 .

[62]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[63]  Generation of (2 × 2) and (4 × 4) two‐photon states with tunable degree of entanglement and mixedness , 2004 .

[64]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[65]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[66]  Jian-Wei Pan,et al.  Realization of a photonic controlled-NOT gate sufficient for quantum computation. , 2004, Physical review letters.

[67]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[68]  C. Piermarocchi,et al.  Theory of quantum optical control of a single spin in a quantum dot , 2003, cond-mat/0301422.

[69]  Andrew G. White,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[70]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[71]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[72]  K. Mølmer,et al.  Measurement induced entanglement and quantum computation with atoms in optical cavities. , 2003, Physical review letters.

[73]  D D Awschalom,et al.  Ultrafast Manipulation of Electron Spin Coherence , 2001, Science.

[74]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[75]  V. Buzek,et al.  Multiparticle entanglement with quantum logic networks: Application to cold trapped ions , 2001, quant-ph/0103067.

[76]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[77]  Martin Rötteler,et al.  Quantum Algorithms: Applicable Algebra and Quantum Physics , 2001 .

[78]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[79]  G. Castagnoli,et al.  Geometric quantum computation with NMR , 1999, quant-ph/9910052.

[80]  D. DiVincenzo,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999, quant-ph/9904096.

[81]  C. Caves,et al.  Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.

[82]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[83]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[84]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[85]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[86]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[87]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[88]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[89]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.