CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing.

The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII)beta has morphogenic functions in neurons not shared by the alpha isoform. CaMKIIbeta contains three exons (v1, v3, and v4) not present in the CaMKIIalpha gene, and two of these exons (v1 and v4) are subject to differential alternative splicing. We show here that CaMKIIbeta, but not alpha, mediated bundling of F-actin filaments in vitro. Most importantly, inclusion of exon v1 was required for CaMKIIbeta association with the F-actin cytoskeleton within cells. CaMKIIbetae, which is the dominant variant around birth and lacks exon v1 sequences, failed to associate with F-actin. By contrast, CaMKIIbeta', which instead lacks exon v4, associated with F-actin as full-length CaMKIIbeta. Previous studies with CaMKIIbeta mutants have indicated a role of nonstimulated kinase activity in enhancing dendritic arborization. Here, we show that F-actin-targeted CaMKIIbeta, but not alpha, was able to phosphorylate actin in vitro even by nonstimulated basal activity in absence of Ca(2+)/CaM. In rat pancreatic islets and in skeletal muscle, the actin-associated CaMKIIbeta' and betaM were the predominant variants, respectively. Thus, cytoskeletal targeting may mediate functions of CaMKIIbeta variants also outside the nervous system.

[1]  R. Tombes,et al.  Cytosolic Targeting Domains of γ and δ Calmodulin-dependent Protein Kinase II* , 2001, The Journal of Biological Chemistry.

[2]  H. Schulman,et al.  Molecular Characterization of Calmodulin Trapping by Calcium/Calmodulin-dependent Protein Kinase II* , 2001, The Journal of Biological Chemistry.

[3]  Alcino J. Silva,et al.  Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. , 1998, Science.

[4]  H. Schulman,et al.  Calmodulin Trapping by Calcium-Calmodulin-Dependent Protein Kinase , 1992, Science.

[5]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[6]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[7]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[8]  A. Pfeiffer,et al.  Cloning and quantitative determination of the human Ca2+/calmodulin-dependent protein kinase II (CaMK II) isoforms in human beta cells , 2000, Diabetologia.

[9]  A. Nairn,et al.  Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II , 2006, The FEBS journal.

[10]  D. Clapham,et al.  SynGAP-MUPP1-CaMKII Synaptic Complexes Regulate p38 MAP Kinase Activity and NMDA Receptor- Dependent Synaptic AMPA Receptor Potentiation , 2004, Neuron.

[11]  J. M. Bradshaw,et al.  Chemical Quenched Flow Kinetic Studies Indicate an Intraholoenzyme Autophosphorylation Mechanism for Ca2+/Calmodulin-dependent Protein Kinase II* , 2002, The Journal of Biological Chemistry.

[12]  H. Schulman,et al.  Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  M. Waxham,et al.  In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus , 1994 .

[15]  D. Benson,et al.  Structural Remodeling of the Synapse in Response to Physiological Activity , 2002, Cell.

[16]  M. Hagiwara,et al.  The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. , 1991, Biochemical and biophysical research communications.

[17]  D. Bredt,et al.  Assembly and plasticity of the glutamatergic postsynaptic specialization , 2003, Current Opinion in Neurobiology.

[18]  H. Schulman,et al.  αKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle , 1998, The EMBO journal.

[19]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[20]  T. Soderling,et al.  Cellular Signaling through Multifunctional Ca2+/Calmodulin-dependent Protein Kinase II* , 2001, The Journal of Biological Chemistry.

[21]  Jixin Wang,et al.  Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase , 1992, Nature.

[22]  A. Marette,et al.  Effects of insulin on regional blood flow and glucose uptake in Wistar and Sprague-Dawley rats. , 2001, Metabolism: clinical and experimental.

[23]  Lubert Stryer,et al.  Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals , 1994, Neuron.

[24]  H. Schulman,et al.  Phosphorylation at the Nuclear Localization Signal of Ca2+/Calmodulin-dependent Protein Kinase II Blocks Its Nuclear Targeting* , 1998, The Journal of Biological Chemistry.

[25]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[26]  T. Yorio,et al.  Dependence of insulin secretion from permeabilized pancreatic beta-cells on the activation of Ca(2+)/calmodulin-dependent protein kinase II. A re-evaluation of inhibitor studies. , 2000, Biochemical pharmacology.

[27]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[28]  V. Urquidi,et al.  A novel pancreatic β‐cell isoform of calcium/calmodulin‐dependent protein kinase II (β 3 isoform) contains a proline‐rich tandem repeat in the association domain , 1995 .

[29]  M. Möhlig,et al.  Ca2+/calmodulin-dependent protein kinase II delta2 regulates gene expression of insulin in INS-1 rat insulinoma cells. , 2003, Cell calcium.

[30]  R. A. Easom CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. , 1999, Diabetes.

[31]  A. Ishida,et al.  A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. , 1995, Biochemical and biophysical research communications.

[32]  H. Schulman,et al.  Substrate-directed Function of Calmodulin in Autophosphorylation of Ca2+/Calmodulin-dependent Protein Kinase II* , 1998, The Journal of Biological Chemistry.

[33]  E. Morris,et al.  Oligomeric structure of a-calmodulin-dependent protein kinase II 1 1 Edited by A. R. Fersht , 2001 .

[34]  T. Soderling,et al.  Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain , 2001, Neuroscience.

[35]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[36]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[37]  M. Waxham,et al.  Three-dimensional Reconstructions of Calcium/Calmodulin-dependent (CaM) Kinase IIα and Truncated CaM Kinase IIα Reveal a Unique Organization for Its Structural Core and Functional Domains* , 2000, The Journal of Biological Chemistry.

[38]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[39]  H. Schulman,et al.  Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. , 1999, Brain research. Molecular brain research.

[40]  V. Urquidi,et al.  A novel pancreatic beta-cell isoform of calcium/calmodulin-dependent protein kinase II (beta 3 isoform) contains a proline-rich tandem repeat in the association domain. , 1995, FEBS letters.

[41]  H. Schulman,et al.  Functional Implications of the Subunit Composition of Neuronal CaM Kinase II* , 1999, The Journal of Biological Chemistry.

[42]  M. Kennedy,et al.  Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  E. Kandel,et al.  The 3'-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[45]  K. Shen,et al.  CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. , 1998, Neuron.

[46]  Tobias Meyer,et al.  CaMKIIβ Functions As an F-Actin Targeting Module that Localizes CaMKIIα/β Heterooligomers to Dendritic Spines , 1998, Neuron.

[47]  Tobias Meyer,et al.  Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. , 2003, Neuron.

[48]  Andy Hudmon,et al.  Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. , 2002, Annual review of biochemistry.

[49]  K. Matsumoto,et al.  Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells. , 2000, Endocrinology.

[50]  H Fujisawa,et al.  Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. , 1989, The Journal of biological chemistry.

[51]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[52]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[53]  H. Schulman,et al.  Developmental expression of the CaM kinase II isoforms: ubiquitous γ- and δ-CaM kinase II are the early isoforms and most abundant in the developing nervous system , 1999 .

[54]  J. M. Turbeville,et al.  Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. , 2003, Gene.

[55]  Angus C. Nairn,et al.  Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme , 2005, Cell.

[56]  Paul De Koninck,et al.  Transition from Reversible to Persistent Binding of CaMKII to Postsynaptic Sites and NR2B , 2006, The Journal of Neuroscience.

[57]  S. Ashcroft,et al.  Human islets of Langerhans express multiple isoforms of calcium/calmodulin-dependent protein kinase II. , 1997, Biochemical and biophysical research communications.

[58]  Tobias Meyer,et al.  Selective Regulation of Neurite Extension and Synapse Formation by the β but not the α Isoform of CaMKII , 2003, Neuron.

[59]  N. Narayanan,et al.  Phosphorylation and activation of the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. , 1993, The Journal of biological chemistry.

[60]  R. Colbran,et al.  Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. , 1993, The Journal of biological chemistry.

[61]  H. Schulman,et al.  Alternative splicing modulates the frequency‐dependent response of CaMKII to Ca2+ oscillations , 2002, The EMBO journal.

[62]  M. Segal Dendritic spines and long-term plasticity , 2005, Nature Reviews Neuroscience.

[63]  E. Nishida,et al.  Type II Ca2+/calmodulin‐dependent protein kinase binds to actin filaments in a calmodulin‐sensitive manner , 1986, FEBS letters.

[64]  R. van Schilfgaarde,et al.  Rat islet isolation yield and function are donor strain dependent , 2004, Laboratory animals.

[65]  Joseph E LeDoux,et al.  Structural plasticity and memory , 2004, Nature Reviews Neuroscience.

[66]  Leslie C. Griffith Calcium/Calmodulin-Dependent Protein Kinase II: An Unforgettable Kinase , 2004, The Journal of Neuroscience.

[67]  R. Colbran,et al.  Calcium/calmodulin-dependent protein kinase II and synaptic plasticity , 2004, Current Opinion in Neurobiology.

[68]  R. Tombes,et al.  CaMK-II oligomerization potential determined using CFP/YFP FRET. , 2005, Biochimica et biophysica acta.

[69]  S. Fleischer,et al.  Phosphorylation Modulates the Function of the Calcium Release Channel of Sarcoplasmic Reticulum from Cardiac Muscle (*) , 1995, The Journal of Biological Chemistry.

[70]  Angus C Nairn,et al.  Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. , 2003, Molecular cell.

[71]  J. Lisman,et al.  Synaptic plasticity: A molecular memory switch , 2001, Current Biology.

[72]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.