A new grouping genetic algorithm for the Multiple Knapsack Problem

The multiple knapsack problem (MKP) is the problem of assigning (packing) objects of various weights and values (profits) to a set of containers (bins) of various capacities, in order to maximize the total profit of the items assigned to the containers. We propose a new genetic algorithm for the MKP which searches a space of undominated candidate solutions. We compare the new algorithm to previous heuristics for the MKP, as well as alternative evolutionary algorithms, and show experimentally that our new algorithm yields the best performance on difficult instances where item weights and profits are highly correlated.

[1]  Colin Reeves,et al.  Hybrid genetic algorithms for bin-packing and related problems , 1996, Ann. Oper. Res..

[2]  J. Stephen Judd,et al.  The Loading Problem , 1990 .

[3]  Paolo Toth,et al.  Heuristic algorithms for the multiple knapsack problem , 1981, Computing.

[4]  David Pisinger An exact algorithm for large multiple knapsack problems , 1999, Eur. J. Oper. Res..

[5]  Emanuel Falkenauer,et al.  A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems , 1994, Evolutionary Computation.

[6]  Richard E. Korf,et al.  Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems , 2011, J. Artif. Intell. Res..

[7]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[8]  Ho Soo Lee,et al.  Computational Aspects of Clearing Continuous Call Double Auctions with Assignment Constraints and Indivisible Demand , 2001, Electron. Commer. Res..

[9]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[10]  Gilbert Laporte,et al.  Upper bounds and algorithms for the maximum cardinality bin packing problem , 2003, Eur. J. Oper. Res..

[11]  Günther R. Raidl The multiple container packing problem: a genetic algorithm approach with weighted codings , 1999, SIAP.

[12]  Edward G. Coffman,et al.  Approximation algorithms for bin packing: a survey , 1996 .

[13]  Günther R. Raidl,et al.  Genetic Algorithms for the Multiple Container Packing Problem , 1998, PPSN.

[14]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[15]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[16]  S. Martello,et al.  Heuristische Algorithmen zur Packung von mehreren Rucksäcken , 1981 .