On Az\'ema-Yor processes, their optimal properties and the Bachelier-drawdown equation

We study the class of Az\'ema-Yor processes defined from a general semimartingale with a continuous running maximum process. We show that they arise as unique strong solutions of the Bachelier stochastic differential equation which we prove is equivalent to the drawdown equation. Solutions of the latter have the drawdown property: they always stay above a given function of their past maximum. We then show that any process which satisfies the drawdown property is in fact an Az\'ema-Yor process. The proofs exploit group structure of the set of Az\'ema-Yor processes, indexed by functions, which we introduce. We investigate in detail Az\'ema-Yor martingales defined from a nonnegative local martingale converging to zero at infinity. We establish relations between average value at risk, drawdown function, Hardy-Littlewood transform and its inverse. In particular, we construct Az\'ema-Yor martingales with a given terminal law and this allows us to rediscover the Az\'ema-Yor solution to the Skorokhod embedding problem. Finally, we characterize Az\'ema-Yor martingales showing they are optimal relative to the concave ordering of terminal variables among martingales whose maximum dominates stochastically a given benchmark.

[1]  Théorie des probabilités continues , 1906 .

[2]  J. Littlewood,et al.  A maximal theorem with function-theoretic applications , 1930 .

[3]  D. Blackwell,et al.  A converse to the dominated convergence theorem , 1963 .

[4]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[5]  Représentation multiplicative d'une surmartingale bornée , 1978 .

[6]  En guise d'introduction , 1978 .

[7]  J. Azéma,et al.  Une solution simple au probleme de Skorokhod , 1979 .

[8]  A simple proof of a theorem of blackwell & dubins on the maximum of a uniformly integrable martingale , 1988 .

[9]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[10]  R. P. Kertz,et al.  Martingales with given maxima and terminal distributions , 1990 .

[11]  R. P. Kertz,et al.  Stochastic and convex orders and lattices of probability measures, with a martingale interpretation , 1992 .

[12]  R. P. Kertz,et al.  Hyperbolic-concave functions and Hardy-Littlewood maximal functions , 1992 .

[13]  Sanford J. Grossman,et al.  OPTIMAL INVESTMENT STRATEGIES FOR CONTROLLING DRAWDOWNS , 1993 .

[14]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[15]  Jakša Cvitanić,et al.  On portfolio optimization under "drawdown" constraints , 1994 .

[16]  L. Galtchouk,et al.  Optimal stopping problem for continuous local martingales and some sharp inequalities , 1997 .

[17]  optionsHaydyn,et al.  Robust hedging of barrier , 1998 .

[18]  David Hobson,et al.  The maximum maximum of a martingale , 1998 .

[19]  W. Hürlimann On Stop-Loss Order and the Distortion Pricing Principle , 1998 .

[20]  Leonard Rogers,et al.  Robust Hedging of Barrier Options , 2001 .

[21]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[22]  Jan Ob,et al.  The Skorokhod Embedding Problem and Its Offspring , 2004 .

[23]  N. Karoui,et al.  A stochastic representation theorem with applications to optimization and obstacle problems , 2004 .

[24]  Jan Ob lój The Skorokhod embedding problem and its offspring ∗ , 2004 .

[25]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[26]  Jan Obloj A complete characterization of local martingales which are functions of Brownian motion and its maximum , 2005 .

[27]  M. Yor,et al.  Doob's maximal identity, multiplicative decompositions and enlargements of filtrations , 2005, math/0503386.

[28]  M. Yor,et al.  Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II , 2005, math/0510575.

[29]  On Local Martingale and its Supremum: Harmonic Functions and beyond , 2004, math/0412196.

[30]  N. El Karoui,et al.  CONSTRAINED OPTIMIZATION WITH RESPECT TO STOCHASTIC DOMINANCE: APPLICATION TO PORTFOLIO INSURANCE , 2006 .

[31]  N. Karoui,et al.  MAX-PLUS DECOMPOSITION OF SUPERMARTINGALES AND CONVEX ORDER. APPLICATION TO AMERICAN OPTIONS AND PORTFOLIO INSURANCE , 2008, 0804.2561.

[32]  Romuald Elie,et al.  Optimal lifetime consumption and investment under a drawdown constraint , 2008, Finance Stochastics.

[33]  Option prices as probabilities , 2008 .

[34]  "en guise d'introduction ...". , 2010, Progress in brain research.