Real root isolation for exact and approximate polynomials using Descartes' rule of signs

Collins und Akritas (1976) have described the Descartes method for isolating the real roots of an integer polynomial in one variable. This method recursively subdivides an initial interval until Descartes' Rule of Signs indicates that all roots have been isolated. The partial converse of Descartes' Rule by Obreshkoff (1952) in conjunction with the bound of Mahler (1964) and Davenport (1985) leads us to an asymptotically almost tight bound for the resulting subdivision tree. It implies directly the best known complexity bounds for the equivalent forms of the Descartes method in the power basis (Collins/Akritas, 1976), the Bernstein basis (Lane/Riesenfeld, 1981) and the scaled Bernstein basis (Johnson, 1991), which are presented here in a unified fashion. Without losing correctness of the output, we modify the Descartes method such that it can handle bitstream coefficients, which can be approximated arbitrarily well but cannot be determined exactly. We analyze the computing time and precision requirements. The method described elsewhere by the author together with Kerber/Wolpert (2007) and Kerber (2008) to determine the arrangement of plane algebraic curves rests in an essential way on variants of the bitstream Descartes algorithm; we analyze a central part of it. Collins und Akritas (1976) haben das Descartes-Verfahren zur Einschliesung der reellen Nullstellen eines ganzzahligen Polynoms in einer Veranderlichen angegeben. Das Verfahren unterteilt rekursiv ein Ausgangsintervall, bis die Descartes'sche Vorzeichenregel anzeigt, dass alle Nullstellen getrennt worden sind. Die partielle Umkehrung der Descartes'schen Regel nach Obreschkoff (1952) in Verbindung mit der Schranke von Mahler (1964) und Davenport (1985) fuhrt uns auf eine asymptotisch fast scharfe Schranke fur den sich ergebenden Unterteilungsbaum. Daraus folgen direkt die besten bekannten Komplexitatsschranken fur die aquivalenten Formen des Descartes-Verfahrens in der Monom-Basis (Collins/Akritas, 1976), der Bernstein-Basis (Lane/Riesenfeld, 1981) und der skalierten Bernstein-Basis (Johnson, 1991), die hier vereinheitlicht dargestellt werden. Ohne dass die Korrektheit der Ausgabe verloren geht, modifizieren wir das Descartes-Verfahren so, dass es mit "Bitstream"-Koeffizienten umgehen kann, die beliebig genau angenahert, aber nicht exakt bestimmt werden konnen. Wir analysieren die erforderliche Rechenzeit und Prazision. Das vom Verfasser mit Kerber/Wolpert (2007) und Kerber (2008) an anderer Stelle beschriebene Verfahren zur Bestimmung des Arrangements (der Schnittfigur) ebener algebraischer Kurven fust wesentlich auf Varianten des Bitstream-Descartes-Verfahrens; wir analysieren einen zentralen Teil davon.

[1]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[2]  Elmar Schömer,et al.  Exact, efficient, and complete arrangement computation for cubic curves , 2006, Comput. Geom..

[3]  Arnold Schönhage,et al.  Adaptive Raising Strategies Optimizing Relative Efficiency , 2003, ICALP.

[4]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[5]  P. Krishnaiah,et al.  A Simple Proof of Descartes' Rule of Signs , 1963 .

[6]  Alkiviadis G. Akritas,et al.  A Comparative Study of Two Real Root Isolation Methods , 2005 .

[7]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[8]  Alfred V. Aho,et al.  Evaluating Polynomials at Fixed Sets of Points , 1975, SIAM J. Comput..

[9]  Alkiviadis G. Akritas,et al.  There is no “Uspensky's method.” , 1986, SYMSAC '86.

[10]  Kurt Mehlhorn,et al.  Effective Computational Geometry for Curves and Surfaces , 2005 .

[11]  J. L. Lagrange,et al.  Oeuvres de Lagrange , 1970 .

[12]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[13]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[14]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[15]  李幼升,et al.  Ph , 1989 .

[16]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[17]  Wolfgang Böhm,et al.  On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..

[18]  Chee Yap On guaranteed accuracy computation , 2004 .

[19]  George Polya,et al.  Remarks on de la Vallée Poussin means and convex conformal maps of the circle. , 1958 .

[20]  R. Loos Computing in Algebraic Extensions , 1983 .

[21]  Edward D. Kim,et al.  Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .

[22]  C. Rheinboldt N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .

[23]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[24]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[25]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .

[26]  Xiaoshen Wang,et al.  A Simple Proof of Descartes's Rule of Signs , 2004, Am. Math. Mon..

[27]  C. Hoffmann Algebraic curves , 1988 .

[28]  Chee-Keng Yap,et al.  Robust Geometric Computation , 2016, Encyclopedia of Algorithms.

[29]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[30]  Michael Sagraloff,et al.  Exact geometric-topological analysis of algebraic surfaces , 2008, SCG '08.

[31]  I. Schoenberg Über variationsvermindernde lineare Transformationen , 1930 .

[32]  Jeremy R. Johnson,et al.  Architecture-aware classical Taylor shift by 1 , 2005, ISSAC.

[33]  Michael Kerber,et al.  Exact arrangements on tori and Dupin cyclides , 2008, SPM '08.

[34]  D. Dimitrov A refinement of the gauss-lucas theorem , 1998 .

[35]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[36]  Arnold Schönhage,et al.  Polynomial root separation examples , 2006, J. Symb. Comput..

[37]  Matsusaburô Fujtwara Über die Wurzeln der algebraischen Gleichungen , 1915 .

[38]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[39]  E. C. Westerfield New Bounds for the Roots of an Algebraic Equation , 1931 .

[40]  Lutz Kettner,et al.  Linear-Time Reordering in a Sweep-line Algorithm for Algebraic Curves Intersecting in a Common Point , 2007 .

[41]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[42]  Jürgen Gerhard,et al.  Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.

[43]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[44]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[45]  M. Marden Geometry of Polynomials , 1970 .

[46]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[47]  Bruno Buchberger Computer algebra: symbolic and algebraic computation, 2nd Edition , 1983 .

[48]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[49]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[50]  Peter Volkmann,et al.  Bemerkungen zu einem Satz von Rodé , 1991 .

[51]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[52]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[53]  B. Mourrain,et al.  The Bernstein Basis and Real Root Isolation , 2007 .

[54]  Joachim von zur Gathen,et al.  Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.

[55]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[56]  I. J. Schoenberg Zur Abzählung der reellen Wurzeln algebraischer Gleichungen , 1934 .

[57]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[58]  M. Mignotte,et al.  ON THE DISTANCE BETWEEN ROOTS OF INTEGER POLYNOMIALS , 2004, Proceedings of the Edinburgh Mathematical Society.

[59]  C. Jacobi Observatiunculae ad theoriam aequationum pertinentes. , 1835 .

[60]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[61]  Michael Kerber,et al.  Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.

[62]  W. Browder,et al.  Annals of Mathematics , 1889 .

[63]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[64]  M. Fujiwara,et al.  Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung , 1916 .

[65]  Daniel Richardson,et al.  How to Recognize Zero , 1997, J. Symb. Comput..

[66]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..

[67]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[68]  Donald E. Knuth The art of computer programming: fundamental algorithms , 1969 .

[69]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[70]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[71]  A. Neumaier Enclosing clusters of zeros of polynomials , 2003 .

[72]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[73]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[74]  Maurice Mignotte,et al.  Some inequalities about univariate polynomials , 1981, SYMSAC '81.

[75]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[76]  G. Szegö,et al.  Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen , 1922 .

[77]  N. Obreshkov Zeros of polynomials , 2003 .

[78]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[79]  Stephan Lipka Über die Abzählung der reellen Wurzeln von algebraischen Gleichungen , 1942 .

[80]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[81]  Kurt Mehlhorn,et al.  A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.

[82]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[83]  Alkiviadis G. Akritas,et al.  Advances on the Continued Fractions Method Using Better Estimations of Positive Root Bounds , 2007, CASC.

[84]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[85]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[86]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[87]  Jeremy R. Johnson,et al.  High-performance implementations of the Descartes method , 2006, ISSAC '06.

[88]  A. Hurwitz Über den Satz von Budan-Fourier , 1912 .

[89]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..

[90]  Maurice Mignotte,et al.  On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.

[91]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[92]  Arno Eigenwillig Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .

[93]  A. Sluis Upperbounds for roots of polynomials , 1970 .

[94]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[95]  Chee-Keng Yap,et al.  Complexity Analysis of Algorithms in Algebraic Computation , 2006 .

[96]  Vikram Sharma Complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..

[97]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[98]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[99]  J B Kiostelikis,et al.  Bounds for positive roots of polynomials , 1986 .

[100]  T. J. Rivlin Bounds on a polynomial , 1970 .

[101]  P. Batra A property of the nearly optimal root-bound , 2004 .