Real root isolation for exact and approximate polynomials using Descartes' rule of signs
暂无分享,去创建一个
[1] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[2] Elmar Schömer,et al. Exact, efficient, and complete arrangement computation for cubic curves , 2006, Comput. Geom..
[3] Arnold Schönhage,et al. Adaptive Raising Strategies Optimizing Relative Efficiency , 2003, ICALP.
[4] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[5] P. Krishnaiah,et al. A Simple Proof of Descartes' Rule of Signs , 1963 .
[6] Alkiviadis G. Akritas,et al. A Comparative Study of Two Real Root Isolation Methods , 2005 .
[7] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[8] Alfred V. Aho,et al. Evaluating Polynomials at Fixed Sets of Points , 1975, SIAM J. Comput..
[9] Alkiviadis G. Akritas,et al. There is no “Uspensky's method.” , 1986, SYMSAC '86.
[10] Kurt Mehlhorn,et al. Effective Computational Geometry for Curves and Surfaces , 2005 .
[11] J. L. Lagrange,et al. Oeuvres de Lagrange , 1970 .
[12] Victor Y. Pan,et al. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..
[13] Michael Kerber,et al. Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.
[14] George E. Collins,et al. Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..
[16] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[17] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[18] Chee Yap. On guaranteed accuracy computation , 2004 .
[19] George Polya,et al. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. , 1958 .
[20] R. Loos. Computing in Algebraic Extensions , 1983 .
[21] Edward D. Kim,et al. Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .
[22] C. Rheinboldt. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .
[23] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[24] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[25] W. Floyd,et al. HYPERBOLIC GEOMETRY , 1996 .
[26] Xiaoshen Wang,et al. A Simple Proof of Descartes's Rule of Signs , 2004, Am. Math. Mon..
[27] C. Hoffmann. Algebraic curves , 1988 .
[28] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[29] David Thomas,et al. The Art in Computer Programming , 2001 .
[30] Michael Sagraloff,et al. Exact geometric-topological analysis of algebraic surfaces , 2008, SCG '08.
[31] I. Schoenberg. Über variationsvermindernde lineare Transformationen , 1930 .
[32] Jeremy R. Johnson,et al. Architecture-aware classical Taylor shift by 1 , 2005, ISSAC.
[33] Michael Kerber,et al. Exact arrangements on tori and Dupin cyclides , 2008, SPM '08.
[34] D. Dimitrov. A refinement of the gauss-lucas theorem , 1998 .
[35] Q. I. Rahman,et al. Analytic theory of polynomials , 2002 .
[36] Arnold Schönhage,et al. Polynomial root separation examples , 2006, J. Symb. Comput..
[37] Matsusaburô Fujtwara. Über die Wurzeln der algebraischen Gleichungen , 1915 .
[38] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[39] E. C. Westerfield. New Bounds for the Roots of an Algebraic Equation , 1931 .
[40] Lutz Kettner,et al. Linear-Time Reordering in a Sweep-line Algorithm for Algebraic Curves Intersecting in a Common Point , 2007 .
[41] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[42] Jürgen Gerhard,et al. Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.
[43] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[44] Xiaomei Yang. Rounding Errors in Algebraic Processes , 1964, Nature.
[45] M. Marden. Geometry of Polynomials , 1970 .
[46] George E. Collins,et al. Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..
[47] Bruno Buchberger. Computer algebra: symbolic and algebraic computation, 2nd Edition , 1983 .
[48] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[49] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[50] Peter Volkmann,et al. Bemerkungen zu einem Satz von Rodé , 1991 .
[51] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[52] C. Q. Lee,et al. The Computer Journal , 1958, Nature.
[53] B. Mourrain,et al. The Bernstein Basis and Real Root Isolation , 2007 .
[54] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[55] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[56] I. J. Schoenberg. Zur Abzählung der reellen Wurzeln algebraischer Gleichungen , 1934 .
[57] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[58] M. Mignotte,et al. ON THE DISTANCE BETWEEN ROOTS OF INTEGER POLYNOMIALS , 2004, Proceedings of the Edinburgh Mathematical Society.
[59] C. Jacobi. Observatiunculae ad theoriam aequationum pertinentes. , 1835 .
[60] K. Mahler. An inequality for the discriminant of a polynomial. , 1964 .
[61] Michael Kerber,et al. Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.
[62] W. Browder,et al. Annals of Mathematics , 1889 .
[63] I. Emiris,et al. Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .
[64] M. Fujiwara,et al. Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung , 1916 .
[65] Daniel Richardson,et al. How to Recognize Zero , 1997, J. Symb. Comput..
[66] Joachim von zur Gathen,et al. Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..
[67] Jeremy Johnson,et al. Algorithms for polynomial real root isolation , 1992 .
[68] Donald E. Knuth. The art of computer programming: fundamental algorithms , 1969 .
[69] Giuseppe Fiorentino,et al. Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.
[70] Jeremy R. Johnson,et al. Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.
[71] A. Neumaier. Enclosing clusters of zeros of polynomials , 2003 .
[72] Donald E. Knuth,et al. Big Omicron and big Omega and big Theta , 1976, SIGA.
[73] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[74] Maurice Mignotte,et al. Some inequalities about univariate polynomials , 1981, SYMSAC '81.
[75] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[76] G. Szegö,et al. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen , 1922 .
[77] N. Obreshkov. Zeros of polynomials , 2003 .
[78] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.
[79] Stephan Lipka. Über die Abzählung der reellen Wurzeln von algebraischen Gleichungen , 1942 .
[80] Kurt Mehlhorn,et al. New bounds for the Descartes method , 2005, SIGS.
[81] Kurt Mehlhorn,et al. A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.
[82] Arnold Schönhage,et al. The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .
[83] Alkiviadis G. Akritas,et al. Advances on the Continued Fractions Method Using Better Estimations of Positive Root Bounds , 2007, CASC.
[84] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[85] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .
[86] A. Ostrowski. Note on Vincent's Theorem , 1950 .
[87] Jeremy R. Johnson,et al. High-performance implementations of the Descartes method , 2006, ISSAC '06.
[88] A. Hurwitz. Über den Satz von Budan-Fourier , 1912 .
[89] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[90] Maurice Mignotte,et al. On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.
[91] L. Zoretti. Sur la résolution des équations numériques , 1909 .
[92] Arno Eigenwillig. Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .
[93] A. Sluis. Upperbounds for roots of polynomials , 1970 .
[94] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[95] Chee-Keng Yap,et al. Complexity Analysis of Algorithms in Algebraic Computation , 2006 .
[96] Vikram Sharma. Complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..
[97] Chee-Keng Yap,et al. Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.
[98] Micha Sharir,et al. Arrangements and Their Applications , 2000, Handbook of Computational Geometry.
[99] J B Kiostelikis,et al. Bounds for positive roots of polynomials , 1986 .
[100] T. J. Rivlin. Bounds on a polynomial , 1970 .
[101] P. Batra. A property of the nearly optimal root-bound , 2004 .