Effects of Releasing Maladapted Individuals: A Demographic‐Evolutionary Model

A model of the joint dynamics of change in population size N and evolution in a quantitative trait z, as a result of a general form of density dependence, local stabilizing selection, and immigration of individuals deviating from the local optimum, is analyzed. For weak selection and migration, a reduction in total equilibrium population size below the initial level without immigration, K, is shown to occur if the immigrants deviates more than \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$\sqrt{8}=2.83$$ \end{document} genetic standard deviations from the optimum and if the rate of migration m is sufficiently large relative to the strength of stabilizing selection s. For the Lotka‐Volterra form of density dependence, two additional equilibria are shown to exist below K, provided that the strength of selection is large relative to the strength of density dependence. Reintroduction of an initially extinct population is possible if the immigrants are not too maladapted and if the genetic variance is sufficiently large. For a simplified version of the model corresponding to competition between similar species or different haplotypes, the equilibrium population size is always exactly at K if \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$m< Ksz^{2}_{1}/ 2$$ \end{document} and is above K otherwise, which shows the importance of including recombination in the model.

[1]  J. Tufto Quantitative genetic models for the balance between migration and stabilizing selection. , 2000, Genetical research.

[2]  I. Fleming,et al.  Lifetime success and interactions of farm salmon invading a native population , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  P. Waldmann,et al.  Comparison of quantitative genetic variation and allozyme diversity within and between populations of Scabiosa canescens and S. columbaria , 1998, Heredity.

[4]  S. Einum,et al.  Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication , 1997 .

[5]  H. M. Gjøen,et al.  Past, present, and future of genetic improvement in salmon aquaculture , 1997 .

[6]  L. Bernatchez,et al.  Population structure and impact of supportive breeding inferred from mitochondrial and microsatellite DNA analyses in land‐locked Atlantic salmon Salmo salar L. , 1997 .

[7]  M. Kirkpatrick,et al.  Evolution of a Species' Range , 1997, The American Naturalist.

[8]  G. J. Glova,et al.  Changes in life history parameters in a naturally spawning population of chinook salmon (Oncorhynchus tshawytscha) associated with releases of hatchery-reared fish , 1997 .

[9]  R. Gomulkiewicz,et al.  How Does Immigration Influence Local Adaptation? A Reexamination of a Familiar Paradigm , 1997, The American Naturalist.

[10]  A. Storfer,et al.  Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. , 1996, Trends in ecology & evolution.

[11]  G. Wallis Conservation genetics: Case histories from nature , 1996 .

[12]  R. Lande,et al.  THE ROLE OF GENETIC VARIATION IN ADAPTATION AND POPULATION PERSISTENCE IN A CHANGING ENVIRONMENT , 1996, Evolution; international journal of organic evolution.

[13]  F. Allendorf,et al.  Conservation and Genetics of Salmonid Fishes , 1996 .

[14]  Michael Lynch,et al.  A Quantitative-Genetic Perspective on Conservation Issues , 1996 .

[15]  R. Gomulkiewicz,et al.  WHEN DOES EVOLUTION BY NATURAL SELECTION PREVENT EXTINCTION? , 1995, Evolution; international journal of organic evolution.

[16]  N. Barton,et al.  Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? , 1994, Genetics.

[17]  J. Cheverud,et al.  Quantitative and Molecular Genetic Variation in Captive Cotton‐Top Tamarins (Saguinus oedipus) , 1994 .

[18]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[19]  M. Gross,et al.  Breeding Success of Hatchery and Wild Coho Salmon (Oncorhynchus Kisutch) in Competition. , 1993, Ecological applications : a publication of the Ecological Society of America.

[20]  N. Ryman,et al.  Effects of Supportive Breeding on the Genetically Effective Population Size , 1991 .

[21]  K. Hindar,et al.  Genetic Effects of Cultured Fish on Natural Fish Populations , 1991 .

[22]  M. Lynch THE GENETIC INTERPRETATION OF INBREEDING DEPRESSION AND OUTBREEDING DEPRESSION , 1991, Evolution; international journal of organic evolution.

[23]  Derek A Roff,et al.  Natural selection and the heritability of fitness components , 1987, Heredity.

[24]  M. Turelli Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. , 1984, Theoretical population biology.

[25]  R. Lande,et al.  A Quantitative Genetic Theory of Life History Evolution , 1982 .

[26]  R. Elston The mathematical theory of quantitative genetics , 1982 .

[27]  J. Haldane,et al.  A mathematical theory of natural and artificial selection , 1926, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  A mathematical theory of natural and artificial selection. (Part VI, Isolation.) , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  J B Haldane,et al.  A MATHEMATICAL THEORY OF NATURAL AND ARTIFICIAL SELECTION. PART II THE INFLUENCE OF PARTIAL SELF‐FERTILISATION, INBREEDING, ASSORTATIVE MATING, AND SELECTIVE FERTILISATION ON THE COMPOSITION OF MENDELIAN POPULATIONS, AND ON NATURAL SELECTION. , 1924, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[31]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .