Convergence of algorithms for fixed points of generalized asymptotically quasi-ϕ-nonexpansive mappings with applications

[1]  A. E. Willner,et al.  Optical signal processing , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[2]  Jen-Chih Yao,et al.  Strong convergence theorems by hybrid methods for countable families of nonlinear operators in Banach spaces , 2012 .

[3]  Jianhua Huang,et al.  Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces , 2011 .

[4]  R. Agarwal,et al.  An implicit iterative algorithm with errors for two families of generalized asymptotically nonexpansive mappings , 2011 .

[5]  Jong Kyu Kim,et al.  Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-ϕ-nonexpansive mappings , 2011 .

[6]  Xiaolong Qin,et al.  On the convergence of hybrid projection algorithms for asymptotically quasi-ϕ-nonexpansive mappings , 2011, Comput. Math. Appl..

[7]  P. Mondal,et al.  Development of Computer Software for Design of 16+4 Speed Gearbox for Tractor and Practical Validation , 2011 .

[8]  Gao Xing-hui Strong Convergence Theorems of Common Fixed Points for a Family of Quasi φ—Nonexpansive Mappings , 2011 .

[9]  R. Agarwal,et al.  Shrinking Projection Methods for a Pair of Asymptotically Quasi-φ-Nonexpansive Mappings , 2010 .

[10]  Haiyun Zhou,et al.  Convergence theorems of a modified hybrid algorithm for a family of quasi-φ-asymptotically nonexpansive mappings , 2010 .

[11]  Shin Min Kang,et al.  On hybrid projection methods for asymptotically quasi-phi-nonexpansive mappings , 2010, Appl. Math. Comput..

[12]  Hong-Kun Xu,et al.  Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings , 2009 .

[13]  Xinghui Gao,et al.  A Strong Convergence Theorem for a Family of Quasi--Nonexpansive Mappings in a Banach Space , 2009 .

[14]  Yeol Je Cho,et al.  Convergence of a modified Halpern-type iteration algorithm for quasi-phi-nonexpansive mappings , 2009, Appl. Math. Lett..

[15]  Yeol Je Cho,et al.  Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces , 2009 .

[16]  Yeol Je Cho,et al.  Strong convergence of the Modified Halpern-type iterative algorithms in Banach spaces , 2009 .

[17]  Yongfu Su,et al.  Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators , 2008 .

[18]  Ravi P. Agarwal,et al.  Generalized Projection Algorithms for Nonlinear Operators , 2007 .

[19]  Kasamsuk Ungchittrakool,et al.  Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space , 2007, J. Approx. Theory.

[20]  Yongfu Su,et al.  Strong convergence theorems for relatively nonexpansive mappings in a Banach space , 2007 .

[21]  Habtu Zegeye,et al.  Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps , 2007, Appl. Math. Comput..

[22]  X. Qin,et al.  Strong convergence of modified Ishikawa iterations for nonlinear mappings , 2007, 0707.1955.

[23]  Grzegorz Lewicki,et al.  Approximative Compactness and Full Rotundity in Musielak-Orlicz spaces and Lorentz-Orlicz spaces , 2006 .

[24]  Hong-Kun Xu,et al.  Strong convergence of the CQ method for fixed point iteration processes , 2006 .

[25]  Wataru Takahashi,et al.  A strong convergence theorem for relatively nonexpansive mappings in a Banach space , 2005, J. Approx. Theory.

[26]  C. Byrne A unified treatment of some iterative algorithms in signal processing and image reconstruction , 2004 .

[27]  W. Takahashi Nonlinear Functional Analysis , 2000 .

[28]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[29]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[30]  Y. Alber Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications , 1993, funct-an/9311001.

[31]  John N. Lee,et al.  Book Rvw: Optical Signal Processing. By Anthony VanderLugt , 1992 .

[32]  Nicholas C. Yannelis,et al.  Equilibrium Theory in Infinite Dimensional Spaces , 1991 .

[33]  Hong-Kun Xu,et al.  Existence and convergence for fixed points of mappings of asymptotically nonexpansive type , 1991 .

[34]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[35]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[36]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[37]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[38]  William A. Kirk,et al.  Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type , 1974 .

[39]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[40]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[41]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[42]  William A. Kirk,et al.  A Fixed Point Theorem for Mappings which do not Increase Distances , 1965 .

[43]  F. Browder,et al.  NONEXPANSIVE NONLINEAR OPERATORS IN A BANACH SPACE. , 1965, Proceedings of the National Academy of Sciences of the United States of America.