Approximate periods of strings

The study of approximately periodic strings is relevant to diverse applications such as molecular biology, data compression, and computer-assisted music analysis. Here we study different forms of approximate periodicity under a variety of distance functions. We consider three related problems, for two of which we derive polynomial-time algorithms; we then show that the third problem is NP-complete.

[1]  Zvi Galil,et al.  Optimal Parallel Algorithms for Periods, Palindromes and Squares (Preliminary Version) , 1991 .

[2]  COSTAS S. ILIOPOULOS,et al.  Optimal Parallel Superprimitivity Testing for Square Arrays , 1996, Parallel Process. Lett..

[3]  Dany Breslauer,et al.  Testing String Superprimitivity in Parallel , 1994, Inf. Process. Lett..

[4]  Gad M. Landau,et al.  Incremental String Comparison , 1998, SIAM J. Comput..

[5]  P. Sellers Pattern recognition in genetic sequences by mismatch density , 1984 .

[6]  William F. Smyth,et al.  A Correction to "An Optimal Algorithm to Compute all the Covers of a String" , 1995, Inf. Process. Lett..

[7]  Maxime Crochemore,et al.  Algorithms for computing evolutionary chains in molecular and musical sequences , 1998 .

[8]  Tao Jiang,et al.  On the Complexity of Multiple Sequence Alignment , 1994, J. Comput. Biol..

[9]  Costas S. Iliopoulos,et al.  The subtree max gap problem with application to parallel string covering , 1994, SODA '94.

[10]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[11]  Jeanette P. Schmidt,et al.  All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings , 1998, SIAM J. Comput..

[12]  Wojciech Rytter,et al.  Text Algorithms , 1994 .

[13]  Gad M. Landau,et al.  An Algorithm for Approximate Tandem Repeats , 1993, CPM.

[14]  Michael G. Main,et al.  An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.

[15]  Dany Breslauer,et al.  An On-Line String Superprimitivity Test , 1992, Inf. Process. Lett..

[16]  David Maier,et al.  The Complexity of Some Problems on Subsequences and Supersequences , 1978, JACM.

[17]  Esko Ukkonen,et al.  The Shortest Common Supersequence Problem over Binary Alphabet is NP-Complete , 1981, Theor. Comput. Sci..

[18]  Andrzej Ehrenfeucht,et al.  Efficient Detection of Quasiperiodicities in Strings , 1993, Theor. Comput. Sci..

[19]  Costas S. Iliopoulos,et al.  On-line algorithms for k-Covering , 1998 .

[20]  Costas S. Iliopoulos,et al.  A Work-Time Optimal Algorithm for Computing All String Covers , 1996, Theor. Comput. Sci..

[21]  William F. Smyth,et al.  An Optimal On-Line Algorithm To Compute All The Covers Of A String , 1998 .

[22]  Costas S. Iliopoulos,et al.  Covering a String , 1993, CPM.

[23]  Sung-Ryul Kim,et al.  A Dynamic Edit Distance Table , 2000, CPM.

[24]  Alberto Apostolico,et al.  An Optimal O(log log N)-Time Parallel Algorithm for Detecting All Squares in a String , 1996, SIAM J. Comput..

[25]  Franco P. Preparata,et al.  Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..

[26]  Maxime Crochemore,et al.  Two-Dimensional Prefix String Matching and Covering on Square Matrices , 1998, Algorithmica.

[27]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[28]  Zvi Galil,et al.  Optimal Parallel Algorithms for Periods, Palindromes and Squares (Extended Abstract) , 1992, ICALP.

[29]  Rajeev Raman,et al.  String-Matching techniques for musical similarity and melodic recognition , 1998 .

[30]  Martin Middendorf More on the Complexity of Common Superstring and Supersequence Problems , 1994, Theor. Comput. Sci..

[31]  Costas S. Iliopoulos,et al.  Optimal Superprimitivity Testing for Strings , 1991, Inf. Process. Lett..