Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes

HgTe nanocrystals are demonstrated to increase the photon-harvesting efficiency of hybrid solar cells over a broad spectral region between 350 and 1500 nm. Devices combining two solar cell concepts, a solid-state nanocrystal-sensitized solar cell and a nanocrystal/polymer-blend solar cell, are described. These devices give incident photon to current efficiencies up to 10 % at around 550 nm monochromatic irradiation and short-circuit current densities of 2 mA cm -2 under simulated AM1.5 (100 mW cm -2 ) illumination (AM: air mass).

[1]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[2]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[3]  K. Tennakone,et al.  A dye-sensitized nano-porous solid-state photovoltaic cell , 1995 .

[4]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[5]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[6]  K. Tennakone,et al.  Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films , 1999 .

[7]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[8]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[9]  A. Malko,et al.  Multiparticle interactions and stimulated emission in chemically synthesized quantum dots , 2002 .

[10]  Moungi G. Bawendi,et al.  From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids , 2002 .

[11]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[12]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[13]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[14]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[15]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[16]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[17]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[18]  C. Brabec,et al.  Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials , 2001 .

[19]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[20]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[21]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[22]  D. Meissner,et al.  Monochromatic versus solar efficiencies of organic solar cells , 2000 .