Modeling the mineral dust aerosol cycle in the climate system

Abstract Soil dust aerosol is an important factor of the climatic system. In order to evaluate the different aspects of the climatic effects of dust, estimates of its highly variable atmospheric distribution need to be computed by transport models. Such models also provide important means of evaluating the processes that govern changes in dustiness during different climatic periods. While models of the modern dust cycle are currently capable of simulating first-order patterns of its global distribution, the parameterization of dust emission in these models is still crude, since input information about soil properties and wind events cannot be resolved at a global scale. Regional models could be useful for evaluating emission parameterizations, as well as dust transport and depositional processes close to source regions. No single existing data set fully describes all aspects of the dust cycle. Validation of modeled dust distributions must therefore include comparisons with different types of observational data. While the compilation of such observational data sets is crucial for model development, model results can, in turn, provide guidance for new measurements of dust properties, which will be useful for future investigation of the dust cycle and its climatic effects.

[1]  W. Peltier,et al.  Ice Age Paleotopography , 1994, Science.

[2]  K. Pye Aeolian dust and dust deposits , 1987 .

[3]  J. Steffensen The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods , 1997 .

[4]  M. Patrick McCormick,et al.  Aerosols and Climate , 1988 .

[5]  Yoram J. Kaufman,et al.  Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing , 2001 .

[6]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[7]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[8]  P. Vitousek,et al.  Changing sources of nutrients during four million years of ecosystem development , 1999, Nature.

[9]  J. Seinfeld,et al.  Radiative forcing by mineral dust aerosols : sensitivity to key variables , 1998 .

[10]  I. Prentice,et al.  A general model for the light-use efficiency of primary production , 1996 .

[11]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[12]  Yaping Shao,et al.  A new model for dust emission by saltation bombardment , 1999 .

[13]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[14]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[15]  C. Genthon,et al.  Atmospheric dust under glacial and interglacial conditions , 1998 .

[16]  D. Dokken,et al.  Climate change 2001 , 2001 .

[17]  Slobodan Nickovic,et al.  A Model for Long-Range Transport of Desert Dust , 1996 .

[18]  J. Jouzel,et al.  Paleoclimatic tracers: An investigation using an atmospheric general circulation model under ice age conditions: 2. Water isotopes , 1993 .

[19]  I. Sokolik,et al.  Investigation of optical and radiative properties of atmospheric dust aerosols , 1993 .

[20]  Jetse D. Kalma,et al.  Potential wind erosion in Australia: A continental perspective , 1988 .

[21]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[22]  M. Schulz,et al.  Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness , 1998 .

[23]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[24]  Zifa Wang,et al.  A deflation module for use in modeling long‐range transport of yellow sand over East Asia , 2000 .

[25]  Zev Levin,et al.  Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions , 2000 .

[26]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[27]  D. Rind,et al.  Influence of the latitudinal temperature gradient on soil dust concentration and deposition in Greenland , 2000 .

[28]  M. Legrand Atmospheric chemistry changes versus past climate inferred from polar ice cores , 1997 .

[29]  N. McFarlane,et al.  The mineral dust aerosol cycle during the Last Glacial Maximum , 1999 .

[30]  Ludger Herrmann,et al.  Dust characteristics and source‐sink relations in eastern West Africa (SW‐Niger and Benin) and South America (Argentinean Pampas) , 1998 .

[31]  Xiaoye Zhang,et al.  Temporal and spatial distributions of dust and its deposition to the China Sea , 1997 .

[32]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[33]  N. Middleton,et al.  Dust storms in Australia: frequency, distribution and seasonality , 1984 .

[34]  G. Carmichael,et al.  The Role of Mineral Aerosol in Tropospheric Chemistry in East Asia—A Model Study , 1999 .

[35]  Ranjit M. Passi,et al.  Modeling dust emission caused by wind erosion , 1988 .

[36]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[37]  Lance M. Leslie,et al.  Wind erosion prediction over the Australian continent , 1997 .

[38]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[39]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .

[40]  Michael T. Coe,et al.  A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands , 1998 .

[41]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[42]  Y. Balkanski,et al.  Modeling the atmospheric distribution of mineral aerosol : Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic , 2000 .

[43]  M. Reheis,et al.  Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology , 1995 .

[44]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[45]  N. Mahowald,et al.  Radiative forcing of climate by ice-age atmospheric dust , 2003 .

[46]  Joseph M. Prospero,et al.  Transport of mineral aerosol from Asia Over the North Pacific Ocean , 1983 .

[47]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[48]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[49]  A. Goudie Dust storms in space and time , 1983 .

[50]  J. Testud,et al.  COPT 81: A Field Experiment Designed for the Study of Dynamics and Electrical Activity of Deep Convection in Continental Tropical Regions , 1984 .

[51]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[52]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[53]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[54]  Nick Middleton,et al.  A geography of dust storms in South‐West Asia , 1986 .

[55]  H. Tsoar,et al.  Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .

[56]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[57]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[58]  R. Duce,et al.  Precipitation scavenging of aerosol particles over remote marine regions , 1986, Nature.

[59]  C. Lorius,et al.  Vostok ice core provides 160,000-year record of atmospheric CO2 , 1987, Nature.

[60]  Toby N. Carlson,et al.  A case study of mobilization and transport of Saharan dust , 1988 .

[61]  Sandy P. Harrison,et al.  Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments , 1999 .

[62]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[63]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[64]  Dale A. Gillette,et al.  A qualitative geophysical explanation for hot spot dust emitting source regions , 1999 .

[65]  James H. Martin,et al.  Iron still comes from above , 1991, Nature.

[66]  D. Gillette,et al.  Estimation of suspension of alkaline material by dust devils in the United States. , 1990 .

[67]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[68]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[69]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[70]  M. Legrand,et al.  Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared , 1999 .

[71]  C. Weaver,et al.  Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns , 1994 .

[72]  V. Ittekkot Particle flux in the ocean , 1996 .

[73]  O. Boucher,et al.  Uncertainties in assessing radiative forcing by mineral dust , 1998 .

[74]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.

[75]  Barbara E. Carlson,et al.  Nonsphericity of dust‐like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling , 1995 .

[76]  E. M. Patterson,et al.  Complex Index of Refraction Between 300 and 700 nm for Saharan Aerosols , 1977 .

[77]  I. Tegen,et al.  A general circulation model study on the interannual variability of soil dust aerosol , 1998 .

[78]  A. Lacis,et al.  Climate forcing, climate sensitivity, and climate response : A radiative modeling perspective on atmospheric aerosols. , 1995 .

[79]  L. J. Hagen,et al.  A wind erosion prediction system to meet user needs , 1991 .

[80]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[81]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[82]  R. Jaenicke,et al.  Saharan dust transport over the North Atlantic Ocean , 1981 .

[83]  I. Prentice,et al.  Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions , 2002 .

[84]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[85]  Rainer Bleck,et al.  Meteorological analysis of long range transport of mineral aerosols over the North Pacific , 1989 .

[86]  François Dulac,et al.  Long‐term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP‐B2 data: 1. Methodology and preliminary results for 1983–1994 in the Mediterranean , 1997 .

[87]  J. Jouzel,et al.  Palaeoclimatological and chronological implications of the Vostok core dust record , 1990, Nature.

[88]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .