Decidability of Order-Based Modal Logics
暂无分享,去创建一个
Xavier Caicedo | George Metcalfe | Jonas Rogger | Ricardo Rodríguez | X. Caicedo | G. Metcalfe | R. Rodríguez | Jonas Rogger
[1] Petr Cintula,et al. From Kripke to Neighborhood Semantics for Modal Fuzzy Logics , 2016, IPMU.
[2] Petr Cintula,et al. From fuzzy logic to fuzzy mathematics: A methodological manifesto , 2006, Fuzzy Sets Syst..
[3] Louise Schmir Hay,et al. Axiomatization of the infinite-valued predicate calculus , 1963, Journal of Symbolic Logic.
[4] Greg Restall,et al. An Introduction to Substructural Logics , 2000 .
[5] Petr Cintula,et al. Weakly Implicative (Fuzzy) Logics I: Basic Properties , 2006, Arch. Math. Log..
[6] Melvin Fitting,et al. Many-valued modal logics II , 1992 .
[7] Petr Hájek,et al. Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..
[8] Marco Cerami,et al. Decidability of a Description Logic over Infinite-Valued Product Logic , 2010, KR.
[9] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[10] R. Keefe. Theories of vagueness , 2000 .
[11] Stephen Cole Kleene,et al. On notation for ordinal numbers , 1938, Journal of Symbolic Logic.
[12] Àngel García-Cerdaña,et al. On Fuzzy Description Logics , 2008, CCIA.
[13] Lluis Godo,et al. On modal extensions of Product fuzzy logic , 2017, J. Log. Comput..
[14] Saul A. Kripke,et al. Semantical Considerations on Modal Logic , 2012 .
[15] Petr Hájek,et al. Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..
[16] D. Gabbay,et al. Proof Theory for Fuzzy Logics , 2008 .
[17] Jennifer Nacht,et al. Modal Logic An Introduction , 2016 .
[18] Antonio L. Furtado,et al. A Temporal Framework for Database Specifications , 1982, VLDB.
[19] Stanley Peters,et al. Quantifiers in language and logic , 2006 .
[20] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[21] Richard Spencer-Smith,et al. Modal Logic , 2007 .
[22] Franco Montagna,et al. Arithmetical complexity of first-order fuzzy logics , 2011 .
[23] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[24] Petr Hájek,et al. On Modal Logics for Qualitative Possibility in a Fuzzy Setting , 1994, UAI.
[25] Moshe Y. Vardi. Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.
[26] George Metcalfe,et al. A Hennessy-Milner Property for Many-Valued Modal Logics , 2014, Advances in Modal Logic.
[27] Lluis Godo,et al. Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..
[28] Michael Dummett,et al. A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).
[29] Petr Hájek,et al. On very true , 2001, Fuzzy Sets Syst..
[30] Saul A. Kripke,et al. Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .
[31] L. Godo,et al. Exploring a Syntactic Notion of Modal Many-Valued Logics , 2008, SOCO 2008.
[32] R. A. Bull. MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..
[33] Christian G. Fermüller,et al. Monadic Fragments of Gödel Logics: Decidability and Undecidability Results , 2007, LPAR.
[34] Graham Priest,et al. MANY-VALUED MODAL LOGICS: A SIMPLE APPROACH , 2008, The Review of Symbolic Logic.
[35] Erich Grädel,et al. On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.
[36] George Georgescu,et al. Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.
[37] David Ripley,et al. Paraconsistent Logic , 2015, J. Philos. Log..
[38] J. Dunn,et al. Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .
[39] Nicholas J. J. Smith. Vagueness and Degrees of Truth , 2008 .
[40] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[41] Hiroakira Ono,et al. Logics without the contraction rule , 1985, Journal of Symbolic Logic.
[42] Michael Mortimer,et al. On languages with two variables , 1975, Math. Log. Q..
[43] P. Mostert,et al. On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .
[44] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[45] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[46] Bruno Teheux,et al. Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics , 2013, Stud Logica.
[47] Peter Øhrstrøm,et al. Temporal Logic , 1994, Lecture Notes in Computer Science.
[48] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[49] Dana S. Scott,et al. Advice on Modal Logic , 1970 .
[50] S. Shapiro. Vagueness in Context , 2006 .
[51] Franco Montagna,et al. Substructural fuzzy logics , 2007, Journal of Symbolic Logic.
[52] Saul Kripke,et al. A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.
[53] Paul McNamara,et al. Deontic logic , 2006, Logic and the Modalities in the Twentieth Century.
[54] Xavier Caicedo,et al. Standard Gödel Modal Logics , 2010, Stud Logica.
[55] Martine De Cock,et al. Spatial reasoning in a fuzzy region connection calculus , 2009, Artif. Intell..
[56] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[57] Matthias Baaz,et al. Compact propositional Godel logics , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).
[58] George Metcalfe,et al. Axiomatizing a Real-Valued Modal Logic , 2016, Advances in Modal Logic.
[59] Martin Goldstern,et al. Continuous Fraïssé Conjecture , 2004, Order.
[60] Saul A. Kripke,et al. Outline of a Theory of Truth , 1975 .
[61] Umberto Straccia,et al. Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..
[62] Arnon Avron,et al. A constructive analysis of RM , 1987, Journal of Symbolic Logic.
[63] Matthias Baaz,et al. First-order Gödel logics , 2007, Ann. Pure Appl. Log..
[64] Jaakko Hintikka,et al. Time And Modality , 1958 .
[65] Petr Hájek,et al. On witnessed models in fuzzy logic , 2007, Math. Log. Q..
[66] Franco Montagna,et al. On the Standard and Rational Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic , 2002, Stud Logica.
[67] Xavier Caicedo,et al. Rodriguez Standard Gödel Modal Logics , .
[68] Uwe Mönnich. Aspects of philosophical logic : some logical forays into central notions of linguistics and philosophy , 1981 .
[69] D.H.J. de Jongh,et al. The logic of the provability , 1998 .
[70] M. Rabin. Decidability of second-order theories and automata on infinite trees , 1968 .
[71] Lluis Godo,et al. Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..
[72] Nick Bezhanishvili,et al. Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..
[73] Eric Pacuit,et al. Neighborhood Semantics for Modal Logic An Introduction , 2007 .
[74] Ronen I. Brafman,et al. Knowledge as a Tool in Motion Planning and Uncertainty , 1994, TARK.
[75] Lluís Godo,et al. A Fuzzy Modal Logic for Similarity Reasoning , 1999 .
[76] Xavier Caicedo,et al. Bi-modal Gödel logic over [0, 1]-valued Kripke frames , 2011, J. Log. Comput..
[77] Petr Hájek,et al. A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..
[78] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[79] Helmut Veith,et al. Complexity of t-tautologies , 2001, Ann. Pure Appl. Log..
[80] Petr Hájek,et al. A Fuzzy Modal Logic for Belief Functions , 2001, Fundam. Informaticae.
[81] Zuzana Haniková,et al. Chapter X: Computational Complexity of Propositional Fuzzy Logics , 2012 .
[82] Umberto Straccia,et al. Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..
[83] Lluis Godo,et al. On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice , 2008, J. Log. Comput..
[84] Guram Bezhanishvili,et al. Logics Over MIPC , 1997 .
[85] Arnon Avron,et al. What is relevance logic? , 2014, Ann. Pure Appl. Log..
[86] Franco Montagna,et al. Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions , 2010, Fuzzy Sets Syst..
[87] J.F.A.K. van Benthem,et al. Modal Correspondence Theory , 1977 .
[88] Petr Hájek. On witnessed models in fuzzy logic II , 2007, Math. Log. Q..
[89] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[90] László Dezsö,et al. Universal Grammar , 1981, Certainty in Action.
[91] J. Rosser,et al. Fragments of many-valued statement calculi , 1958 .
[92] Petr Cintula,et al. Fuzzy class theory , 2005, Fuzzy Sets Syst..
[93] H. Ono. Substructural Logics and Residuated Lattices — an Introduction , 2003 .
[94] Melvin Fitting,et al. Many-valued modal logics , 1991, Fundam. Informaticae.
[95] John Bacon. Review: Michael Dummett, A Propositional Calculus with Denumerable Matrix , 1968 .
[96] Nuel D. Belnap,et al. A Useful Four-Valued Logic , 1977 .
[97] Nicola Olivetti,et al. Towards a Proof Theory of Gödel Modal Logics , 2011, Log. Methods Comput. Sci..
[98] Franco Montagna,et al. Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies , 2009, Ann. Pure Appl. Log..
[99] Ghita Holmström-Hintikka,et al. Provability in Logic , 2001 .
[100] Frank Wolter,et al. Superintuitionistic Companions of Classical Modal Logics , 1997, Stud Logica.
[101] Daniele Mundici,et al. Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..
[102] Michael Zakharyaschev,et al. Undecidability of first-order intuitionistic and modal logics with two variables , 2005, Bull. Symb. Log..
[103] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[104] Petr Hájek,et al. On fuzzy modal logics S5(L) , 2010, Fuzzy Sets Syst..
[105] Petr Cintula,et al. Implicational (semilinear) logics I: a new hierarchy , 2010, Arch. Math. Log..
[106] J. Guéron,et al. Time and Modality , 2008 .