Decidability of Order-Based Modal Logics

Abstract Decidability of the validity problem is established for a family of many-valued modal logics, notably Godel modal logics, where propositional connectives are evaluated according to the order of values in a complete sublattice of the real unit interval [ 0 , 1 ] , and box and diamond modalities are evaluated as infima and suprema over (many-valued) Kripke frames. If the sublattice is infinite and the language is sufficiently expressive, then the standard semantics for such a logic lacks the finite model property. It is shown here, however, that, given certain regularity conditions, the finite model property holds for a new semantics for the logic, providing a basis for establishing decidability and PSPACE-completeness. Similar results are also established for S5 logics that coincide with one-variable fragments of first-order many-valued logics. In particular, a first proof is given of the decidability and co-NP-completeness of validity in the one-variable fragment of first-order Godel logic.

[1]  Petr Cintula,et al.  From Kripke to Neighborhood Semantics for Modal Fuzzy Logics , 2016, IPMU.

[2]  Petr Cintula,et al.  From fuzzy logic to fuzzy mathematics: A methodological manifesto , 2006, Fuzzy Sets Syst..

[3]  Louise Schmir Hay,et al.  Axiomatization of the infinite-valued predicate calculus , 1963, Journal of Symbolic Logic.

[4]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[5]  Petr Cintula,et al.  Weakly Implicative (Fuzzy) Logics I: Basic Properties , 2006, Arch. Math. Log..

[6]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[7]  Petr Hájek,et al.  Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..

[8]  Marco Cerami,et al.  Decidability of a Description Logic over Infinite-Valued Product Logic , 2010, KR.

[9]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[10]  R. Keefe Theories of vagueness , 2000 .

[11]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[12]  Àngel García-Cerdaña,et al.  On Fuzzy Description Logics , 2008, CCIA.

[13]  Lluis Godo,et al.  On modal extensions of Product fuzzy logic , 2017, J. Log. Comput..

[14]  Saul A. Kripke,et al.  Semantical Considerations on Modal Logic , 2012 .

[15]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[16]  D. Gabbay,et al.  Proof Theory for Fuzzy Logics , 2008 .

[17]  Jennifer Nacht,et al.  Modal Logic An Introduction , 2016 .

[18]  Antonio L. Furtado,et al.  A Temporal Framework for Database Specifications , 1982, VLDB.

[19]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[22]  Franco Montagna,et al.  Arithmetical complexity of first-order fuzzy logics , 2011 .

[23]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[24]  Petr Hájek,et al.  On Modal Logics for Qualitative Possibility in a Fuzzy Setting , 1994, UAI.

[25]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[26]  George Metcalfe,et al.  A Hennessy-Milner Property for Many-Valued Modal Logics , 2014, Advances in Modal Logic.

[27]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[28]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[29]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[30]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[31]  L. Godo,et al.  Exploring a Syntactic Notion of Modal Many-Valued Logics , 2008, SOCO 2008.

[32]  R. A. Bull MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..

[33]  Christian G. Fermüller,et al.  Monadic Fragments of Gödel Logics: Decidability and Undecidability Results , 2007, LPAR.

[34]  Graham Priest,et al.  MANY-VALUED MODAL LOGICS: A SIMPLE APPROACH , 2008, The Review of Symbolic Logic.

[35]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[36]  George Georgescu,et al.  Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.

[37]  David Ripley,et al.  Paraconsistent Logic , 2015, J. Philos. Log..

[38]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .

[39]  Nicholas J. J. Smith Vagueness and Degrees of Truth , 2008 .

[40]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[41]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[42]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[43]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[44]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[45]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[46]  Bruno Teheux,et al.  Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics , 2013, Stud Logica.

[47]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[48]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[49]  Dana S. Scott,et al.  Advice on Modal Logic , 1970 .

[50]  S. Shapiro Vagueness in Context , 2006 .

[51]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.

[52]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[53]  Paul McNamara,et al.  Deontic logic , 2006, Logic and the Modalities in the Twentieth Century.

[54]  Xavier Caicedo,et al.  Standard Gödel Modal Logics , 2010, Stud Logica.

[55]  Martine De Cock,et al.  Spatial reasoning in a fuzzy region connection calculus , 2009, Artif. Intell..

[56]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[57]  Matthias Baaz,et al.  Compact propositional Godel logics , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[58]  George Metcalfe,et al.  Axiomatizing a Real-Valued Modal Logic , 2016, Advances in Modal Logic.

[59]  Martin Goldstern,et al.  Continuous Fraïssé Conjecture , 2004, Order.

[60]  Saul A. Kripke,et al.  Outline of a Theory of Truth , 1975 .

[61]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[62]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.

[63]  Matthias Baaz,et al.  First-order Gödel logics , 2007, Ann. Pure Appl. Log..

[64]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[65]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[66]  Franco Montagna,et al.  On the Standard and Rational Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic , 2002, Stud Logica.

[67]  Xavier Caicedo,et al.  Rodriguez Standard Gödel Modal Logics , .

[68]  Uwe Mönnich Aspects of philosophical logic : some logical forays into central notions of linguistics and philosophy , 1981 .

[69]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[70]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[71]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[72]  Nick Bezhanishvili,et al.  Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..

[73]  Eric Pacuit,et al.  Neighborhood Semantics for Modal Logic An Introduction , 2007 .

[74]  Ronen I. Brafman,et al.  Knowledge as a Tool in Motion Planning and Uncertainty , 1994, TARK.

[75]  Lluís Godo,et al.  A Fuzzy Modal Logic for Similarity Reasoning , 1999 .

[76]  Xavier Caicedo,et al.  Bi-modal Gödel logic over [0, 1]-valued Kripke frames , 2011, J. Log. Comput..

[77]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[78]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[79]  Helmut Veith,et al.  Complexity of t-tautologies , 2001, Ann. Pure Appl. Log..

[80]  Petr Hájek,et al.  A Fuzzy Modal Logic for Belief Functions , 2001, Fundam. Informaticae.

[81]  Zuzana Haniková,et al.  Chapter X: Computational Complexity of Propositional Fuzzy Logics , 2012 .

[82]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[83]  Lluis Godo,et al.  On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice , 2008, J. Log. Comput..

[84]  Guram Bezhanishvili,et al.  Logics Over MIPC , 1997 .

[85]  Arnon Avron,et al.  What is relevance logic? , 2014, Ann. Pure Appl. Log..

[86]  Franco Montagna,et al.  Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions , 2010, Fuzzy Sets Syst..

[87]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[88]  Petr Hájek On witnessed models in fuzzy logic II , 2007, Math. Log. Q..

[89]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[90]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[91]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[92]  Petr Cintula,et al.  Fuzzy class theory , 2005, Fuzzy Sets Syst..

[93]  H. Ono Substructural Logics and Residuated Lattices — an Introduction , 2003 .

[94]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[95]  John Bacon Review: Michael Dummett, A Propositional Calculus with Denumerable Matrix , 1968 .

[96]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[97]  Nicola Olivetti,et al.  Towards a Proof Theory of Gödel Modal Logics , 2011, Log. Methods Comput. Sci..

[98]  Franco Montagna,et al.  Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies , 2009, Ann. Pure Appl. Log..

[99]  Ghita Holmström-Hintikka,et al.  Provability in Logic , 2001 .

[100]  Frank Wolter,et al.  Superintuitionistic Companions of Classical Modal Logics , 1997, Stud Logica.

[101]  Daniele Mundici,et al.  Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..

[102]  Michael Zakharyaschev,et al.  Undecidability of first-order intuitionistic and modal logics with two variables , 2005, Bull. Symb. Log..

[103]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[104]  Petr Hájek,et al.  On fuzzy modal logics S5(L) , 2010, Fuzzy Sets Syst..

[105]  Petr Cintula,et al.  Implicational (semilinear) logics I: a new hierarchy , 2010, Arch. Math. Log..

[106]  J. Guéron,et al.  Time and Modality , 2008 .