Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations

Mechanical and thermodynamical properties of bulk polyethylene have been scrutinized using coarse-grained (CG) molecular dynamics simulations. Entangled but cross-link-free polymer clusters are generated by the semicrystalline lattice method for a wide range chain length of alkane modeled by CG beads, and tested under compressive and tensile stress with various temperature and strain rates. It has been found that the specific volume and volumetric thermal expansion coefficient decrease with the increase of chain length, where the specific volume is a linear function of the bond number to all bead number ratios, while the thermal expansion coefficient is a linear rational function of the ratio. Glass-transition temperature, however, does not seem to be sensitive to chain length. Yield stress under tension and compression increases with the increase of the bond number to all bead number ratio and strain rate as well as with decreasing temperature. The correlation found between chain length and these physical parameters suggests that the ratio dominates the mechanical properties of the present CG-modeled linear polymer material.

[1]  H. Berendsen,et al.  Molecular dynamics simulation of the transport of small molecules across a polymer membrane , 1992 .

[2]  Yong Jin,et al.  Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study , 1994 .

[3]  E. Perpète,et al.  Multiscale Modelling of Polymer Properties , 2006 .

[4]  J. Hanscomb,et al.  High-temperature electrical conduction in polyethylene-terephthalate. I. Experiment , 1979 .

[5]  J. Ferry Viscoelastic properties of polymers , 1961 .

[6]  Stephen M. Walley,et al.  The rapid deformation behaviour of various polymers , 1991 .

[7]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[8]  J. Hanscomb,et al.  High-temperature electrical conduction in polyethylene-terephthalate. II. Analysis , 1979 .

[9]  E. Giessen,et al.  On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers , 1993 .

[10]  A. Argon A theory for the low-temperature plastic deformation of glassy polymers , 1973 .

[11]  Joseph Katz,et al.  Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n‐alkanes , 1970 .

[12]  A. Donald,et al.  The entanglement network and craze micromechanics in glassy polymers , 1982 .

[13]  Fei Zhang MOLECULAR-DYNAMICS SIMULATION OF SOLITARY WAVES IN POLYETHYLENE , 1997 .

[14]  Jean-Loup Faulon,et al.  Stochastic generator of chemical structure. 4. Building polymeric systems with specified properties , 2001, J. Comput. Chem..

[15]  M. Boyce,et al.  Energy storage during inelastic deformation of glassy polymers , 1993 .

[16]  Mary C. Boyce,et al.  Evolution of plastic anisotropy in amorphous polymers during finite straining , 1993 .

[17]  Heh Han Meijer,et al.  On the origin of strain hardening in glassy polymers , 2003 .

[18]  R. Roe,et al.  Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Dynamics above the glass transition , 1991 .

[19]  노영준 Molecular Dynamics Simulation of Polymer Liquid and Glass , 1991 .

[20]  M. Boyce,et al.  Molecular response of a glassy polymer to active deformation , 2004 .

[21]  B. U. Felderhof,et al.  Time-dependent self-diffusion in a semidilute suspension of Brownian particles , 1992 .

[22]  Zhiliang Zhang,et al.  Size effect on mechanical properties of micron-sized PS–DVB polymer particles , 2008 .

[23]  A. Donald,et al.  Effect of strain history on craze microstructure , 1982 .

[24]  Michael L. Klein,et al.  A coarse grain model for n-alkanes parameterized from surface tension data , 2003 .

[25]  Maurizio Fermeglia,et al.  Multiscale modeling for polymer systems of industrial interest , 2007 .

[26]  Reinier L. C. Akkermans,et al.  A structure-based coarse-grained model for polymer melts , 2001 .

[27]  J. Hanscomb,et al.  High-field transient conduction in PET in the microsecond-millisecond time range , 1978 .

[28]  Maurizio Fermeglia,et al.  Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations , 2003 .

[29]  Andrea Di Matteo,et al.  From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains. , 2007, The journal of physical chemistry. B.

[30]  Richard H. Boyd,et al.  Glass Transition Temperatures of Polymers from Molecular Dynamics Simulations , 1994 .

[31]  F. Müller-Plathe,et al.  The Soret effect in dilute polymer solutions: influence of chain length, chain stiffness, and solvent quality. , 2006, The Journal of chemical physics.

[32]  Matthias Wessling,et al.  Free energy calculations of small molecules in dense amorphous polymers. Effect of the initial guess configuration in molecular dynamics studies , 1996 .

[33]  R. E. Robertson,et al.  Theory for the Plasticity of Glassy Polymers , 1966 .

[34]  Giorgio F. Signorini,et al.  Structural relaxation and dynamical correlations in a molten state near the liquid–glass transition: A molecular dynamics study , 1990 .

[35]  Takamichi Terao,et al.  Nonequilibrium molecular dynamics methods for computing the thermal conductivity: application to amorphous polymers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  D. Theodorou,et al.  Connectivity-Altering Monte Carlo Simulations of the End Group Effects on Volumetric Properties for Poly(ethylene oxide) , 2004 .

[37]  A. Dahoun,et al.  Video-controlled tensile testing of polymers and metals beyond the necking point , 1992 .

[38]  D. J. Walsh,et al.  The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight , 1992 .

[39]  R. Gee,et al.  The role of the torsional potential in relaxation dynamics: a molecular dynamics study of polyethylene , 1998 .

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[42]  Philip G. Whitten,et al.  Polymer entanglement density and its influence on interfacial friction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Donald L. Turcotte,et al.  Geodynamics - 2nd Edition , 2002 .

[44]  A. Louis Beware of density dependent pair potentials , 2002, cond-mat/0205110.

[45]  M. Boyce,et al.  The large strain compression, tension, and simple shear of polycarbonate , 1994 .

[46]  M. Michels,et al.  Correlated segmental dynamics in amorphous atactic polystyrene: A Molecular dynamics simulation study , 2002 .

[47]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[48]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation , 1988 .

[49]  K. Ngai,et al.  Resolution of sub-Rouse modes of polystyrene by dissolution , 2002 .

[50]  D. Plazek Anomalous viscoelastic properties of polymers: Experiments and explanations , 2007 .

[51]  Grant D. Smith,et al.  A molecular dynamics simulation of polyethylene , 1993 .