Interferometric Biosensors for Environmental Pollution Detection

One important step in the development of biosensors is the design and fabrication of a highly sensitive physical transducer, that is, a device capable of transforming efficiently a chemical or biological reaction into a measurable signal. There are several physical methods to obtain this transducing signal such as those based on amperometric, potentiometric or acoustic systems. However, transducers that make use of optical principles offer more attractive characteristics such as immunity to electromagnetic interference, possible use in aggressive environments and, in general, a higher sensitivity.

[1]  59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation , 1999, IEEE Photonics Technology Letters.

[2]  Wolfgang Ehrfeld,et al.  A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon , 1997 .

[3]  Teunis Jan Ikkink,et al.  Interferometric interrogation concepts for integrated electro-optical sensor systems , 1998 .

[4]  Volker Scheumann,et al.  Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. , 2002, Biosensors & bioelectronics.

[5]  Rene Heideman,et al.  Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor , 1993 .

[6]  R D Harris,et al.  Sensitivity enhancement of integrated optical sensors by use of thin high-index films. , 1999, Applied optics.

[7]  B H Schneider,et al.  Highly sensitive optical chip immunoassays in human serum. , 2000, Biosensors & bioelectronics.

[8]  A. Brandenburg,et al.  Interferometric sensor for detection of surface-bound bioreactions. , 2000, Applied optics.

[9]  T. Hashimoto,et al.  An application of a silica-on-terraced-silicon platform to hybrid Mach-Zehnder interferometric circuits consisting of silica-waveguides and LiNbO/sub 3/ phase-shifters , 1994, IEEE Photonics Technology Letters.

[10]  James S. Wilkinson,et al.  Integrated optical Mach-Zehnder interferometers as simazine immunoprobes , 1997 .

[11]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[12]  Ludmila Eckertova,et al.  Physics of thin films , 1977 .

[13]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[14]  Frances S. Ligler,et al.  Optical biosensors : present and future , 2002 .

[15]  R. Alferness,et al.  Guided-wave optoelectronics , 1988 .

[16]  L. Lechuga,et al.  Optical sensors based on evanescent field sensing Part 1. Surface plasmon resonance sensors , 2000 .

[17]  W. Lukosz,et al.  Sensitivity of grating couplers as integrated-optical chemical sensors , 1989 .

[18]  James S. Wilkinson,et al.  Integrated optical Mach-Zehnder biosensor , 1998 .

[19]  Laura M. Lechuga,et al.  The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology , 1997 .

[20]  Clement E. Furlong,et al.  A commercial solution for surface plasmon sensing , 1996 .

[21]  Edmond J. Murphy,et al.  Integrated Optical Circuits and Components: Design and Applications , 1999 .

[22]  Laura M. Lechuga,et al.  Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects , 1995 .

[23]  Duncan T. Moore,et al.  Phase-Locked Interferometry , 1977, Optics & Photonics.

[24]  Ari Tervonen,et al.  THIN-FILM CHEMICAL SENSORS WITH WAVEGUIDE ZEEMAN INTERFEROMETRY , 1998 .

[25]  W. Knoll,et al.  Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. , 1999, Biosensors & bioelectronics.

[26]  O. Parriaux,et al.  Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors , 1998 .

[27]  T. Giallorenzi,et al.  Optical fiber sensor technology , 1982, 1985 International Electron Devices Meeting.

[28]  J. Cronin,et al.  The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation , 1992 .

[29]  Laura M. Lechuga,et al.  Optimized silicon antiresonant reflecting optical waveguides for sensing applications , 2001 .

[30]  Analysis of the response of planar polarization interferometer to molecular layer formation: fibrinogen adsorption on silicon nitride surface. , 2001, Biosensors & bioelectronics.

[31]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[32]  Wei Jin,et al.  Sensitivity enhancement of D-fibre methane gas sensor using high-index overlay , 1993 .

[33]  M. Houška,et al.  Optical biosensors for real-time measurement of analytes in blood plasma. , 2002, Biosensors & bioelectronics.

[34]  Laura M. Lechuga,et al.  Immunosensors Based on Total Internal Reflection , 1996 .

[35]  Y. Kokubun,et al.  ARROW-type polarizer utilizing form birefringence in multilayer first cladding , 1993, IEEE Photonics Technology Letters.

[36]  A. Llobera,et al.  Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor , 2000, Journal of Lightwave Technology.

[37]  R. Heideman,et al.  Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system , 1999 .

[38]  G. Wenz,et al.  An integrated optical Mach–Zehnder interferometer functionalized by β-cyclodextrin to monitor binding reactions , 2001 .

[39]  Jan Greve,et al.  New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor , 1997 .