BaTiO3‐based nanolayers and nanotubes: First‐principles calculations

The first‐principles calculations using hybrid exchange‐correlation functional and localized atomic basis set are performed for BaTiO3 (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 $\bar 1$) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single‐wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 $\bar 1$) layers may show antiferroelectric arrangement of TiO bonds. Comparison of stability of the BTO‐based and SrTiO3‐based NTs shows that the former are more stable than the latter. © 2012 Wiley Periodicals, Inc.

[1]  R. Evarestov,et al.  LCAO calculations of SrTiO3 nanotubes , 2011, MSE 2011.

[2]  D. A. Tenne,et al.  Absence of low-temperature phase transitions in epitaxial BaTiO 3 thin films , 2004 .

[3]  I. Milošević,et al.  Symmetry of nanotubes rolled up from arbitrary two-dimensional lattices along an arbitrary chiral vector , 2007 .

[4]  Robert A. Evarestov,et al.  Quantum chemistry of solids , 2007 .

[5]  Robert A. Evarestov,et al.  First‐principles calculations on the four phases of BaTiO3 , 2012, J. Comput. Chem..

[6]  Chunlei Wang,et al.  First-principles study of the (001) surface of cubic BaZrO3 and BaTiO3 , 2006 .

[7]  R. Newnham,et al.  Ferroelectricity: The Foundation of a Field from Form to Function , 2005 .

[8]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[9]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[10]  W. Chen,et al.  Synthesis of barium strontium titanate nanorods in reverse microemulsion , 2007 .

[11]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[12]  N. Padture,et al.  Nanotubes patterned thin films of barium-strontium titanate , 2005 .

[13]  J. Shyue,et al.  Template-based fabrication of SrTiO3 and BaTiO3 nanotubes. , 2009, Inorganic chemistry.

[14]  X. Lou,et al.  Recent materials characterizations of [2D] and [3D] thin film ferroelectric structures , 2005 .

[15]  C. Rao,et al.  Nanomaterials chemistry : recent developments and new directions , 2007 .

[16]  S. Piskunov,et al.  Ab initio calculations of the BaTiO3 (100) and (110) surfaces , 2006 .

[17]  Heinz Schmitt,et al.  Elastic and piezoelectric coefficients of TSSG barium titanate single crystals , 1986 .

[18]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[19]  R. Evarestov,et al.  Symmetry and Models of Double-Wall BN and TiO2 Nanotubes with Hexagonal Morphology , 2011 .

[20]  J. Spanier,et al.  Single‐Crystalline Barium Titanate Nanowires , 2003 .

[21]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[22]  Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces , 1999, cond-mat/9908363.

[23]  Changku Sun,et al.  Phase transition in BaTiO3 nanotube arrays , 2011 .

[24]  D. Vanderbilt,et al.  Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures , 2007, 0710.2112.

[25]  Longtu Li,et al.  Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates , 2005 .

[26]  Finite-size effects in BaTiO3 nanowires , 2005, cond-mat/0503362.

[27]  M. Steinhart,et al.  Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanotubes , 2003 .

[28]  G. Pilania,et al.  Ab initio study of ferroelectricity in BaTiO 3 nanowires , 2009 .

[29]  Changku Sun,et al.  Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method , 2009, Nanotechnology.

[30]  J. Cui,et al.  Ab initio study of ATiO3 (001) surfaces , 2009 .

[31]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[32]  H. L. Johnston,et al.  Structure of Barium Titanate at Elevated Temperatures , 1951 .

[33]  Chun-ting Wang,et al.  The atomic and electronic structure of the TiO2- and BaO-terminated BaTiO3(0 0 1) surfaces in a paraelectric phase , 2004 .

[34]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[35]  Hongjun Zhou,et al.  Environmentally friendly methodologies of nanostructure synthesis. , 2007, Small.

[36]  J. Maier,et al.  Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces , 2005 .

[37]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[38]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[39]  T. Natsuki,et al.  Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. , 2012, ACS applied materials & interfaces.

[40]  S. Piskunov,et al.  SrTiO3 Nanotubes with Negative Strain Energy Predicted from First Principles , 2011 .

[41]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[42]  Lingling Wang,et al.  Ab initio study of rumpled relaxation and core-level shift of barium titanate surface , 2007 .