Consecutive-ones: Handling Lattice Planarity Efficiently
暂无分享,去创建一个
[1] Christian Zschalig. Bipartite Ferrers-Graphs and Planar Concept Lattices , 2007, ICFCA.
[2] Peter C. Fishburn,et al. Partial orders of dimension 2 , 1972, Networks.
[3] Douglas B. West,et al. Representing digraphs using intervals or circular arcs , 1995, Discret. Math..
[4] Douglas B. West,et al. Interval digraphs: An analogue of interval graphs , 1989, J. Graph Theory.
[5] Anne Berry,et al. Obtaining and maintaining polynomial-sized concept lattices , 2002 .
[6] Jeremy P. Spinrad,et al. Very Fast Instances for Concept Generation , 2006, ICFCA.
[7] Peter C. Fishburn,et al. PARTIAL ORDERS OF DIMENSION 2, INTERVAL ORDERS AND INTERVAL GRAPHS, , 1970 .
[8] Anne Berry,et al. Representing a concept lattice by a graph , 2002, Discret. Appl. Math..
[9] Christian Zschalig. Characterizing Planar Lattices Using Left-Relations , 2006, ICFCA.
[10] L. Beran,et al. [Formal concept analysis]. , 1996, Casopis lekaru ceskych.
[11] Anne Berry,et al. Concepts can't afford to stammer , 2003 .
[12] Elaine M. Eschen,et al. A Characterization of Some Graph Classes with No Long Holes , 1995, J. Comb. Theory, Ser. B.
[13] Jeremy P. Spinrad,et al. Efficient graph representations , 2003, Fields Institute monographs.
[14] Ashok Kr. Das,et al. Bigraphs/digraphs of Ferrers dimension 2 and asteroidal triple of edges , 2005, Discret. Math..
[15] Marianne Huchard,et al. Comparison of Performances of Galois Subhierarchy-building Algorithms , 2007 .
[16] Ben Dushnik,et al. Partially Ordered Sets , 1941 .
[17] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[18] Douglas B. West,et al. Classes of Interval Digraphs and 0,1-matrices , 1997 .
[19] Marianne Huchard,et al. Performances of Galois Sub-hierarchy-building Algorithms , 2007, ICFCA.
[20] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..