An Analog Characterization of Elementarily Computable Functions over the Real Numbers

We present an analog and machine-independent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. Concerning recursive analysis, our results provide machine-independent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higher-order (type 2) Turing machines. Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers.

[1]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[2]  Manuel Lameiras Campagnolo,et al.  The Complexity of Real Recursive Functions , 2002, UMC.

[3]  Andrzej Grzegorczyk On the definition of computable functionals , 1955 .

[4]  Jerzy Mycka mu -Recursion and infinite limits , 2003, Theor. Comput. Sci..

[5]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1998, J. Comput. Syst. Sci..

[6]  M. B. Pour-El,et al.  Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers) , 1974 .

[7]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[8]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[9]  István Németi,et al.  0 Fe b 20 02 Non-Turing computations via Malament – Hogarth spacetimes , 2002 .

[10]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[11]  Cristopher Moore,et al.  An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..

[12]  Manuel L. Campagnolo,et al.  Computational complexity of real valued recursive functions and analog circuits , 2001 .

[13]  Toby Ord,et al.  Hypercomputation: computing more than the Turing machine , 2002, ArXiv.

[14]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[15]  William Thomson IV. On an instrument for calculating (∫φ(x) ψ (x)dx), the integral of the product of two given functions , 1876, Proceedings of the Royal Society of London.

[16]  Jerzy Mycka Infinite limits and R-recursive functions , 2003, Acta Cybern..

[17]  Pekka Orponen,et al.  A Survey of Continous-Time Computation Theory , 1997, Advances in Algorithms, Languages, and Complexity.

[18]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[19]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[20]  Olivier Bournez Achilles and the Tortoise Climbing up the Hyper-Arithmetical Hierarchy , 1999, Theor. Comput. Sci..

[21]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[22]  Thomas A. Henzinger,et al.  Robust Undecidability of Timed and Hybrid Systems , 2000, HSCC.

[23]  Hava T. Siegelmann,et al.  Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.

[24]  Mark D. Bowles,et al.  U.S. Technological Enthusiasm and British Technological Skepticism in the Age of the Analog Brain , 1996, IEEE Ann. Hist. Comput..

[25]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[26]  Qing Zhou Subclasses of computable real valued functions , 1997 .

[27]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[28]  Olivier Bournez Complexite algorithmique des systemes dynamiques continus et hybrides , 1999 .

[29]  Ahmed Bouajjani,et al.  Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[30]  L. Rubel,et al.  A differentially algebraic replacement theorem, and analog computability , 1987 .