An Analog Characterization of Elementarily Computable Functions over the Real Numbers
暂无分享,去创建一个
[1] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[2] Manuel Lameiras Campagnolo,et al. The Complexity of Real Recursive Functions , 2002, UMC.
[3] Andrzej Grzegorczyk. On the definition of computable functionals , 1955 .
[4] Jerzy Mycka. mu -Recursion and infinite limits , 2003, Theor. Comput. Sci..
[5] Eugene Asarin,et al. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1998, J. Comput. Syst. Sci..
[6] M. B. Pour-El,et al. Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers) , 1974 .
[7] Claude E. Shannon,et al. Mathematical Theory of the Differential Analyzer , 1941 .
[8] Klaus Weihrauch,et al. Computable Analysis , 2005, CiE.
[9] István Németi,et al. 0 Fe b 20 02 Non-Turing computations via Malament – Hogarth spacetimes , 2002 .
[10] M. Hogarth. Does general relativity allow an observer to view an eternity in a finite time? , 1992 .
[11] Cristopher Moore,et al. An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..
[12] Manuel L. Campagnolo,et al. Computational complexity of real valued recursive functions and analog circuits , 2001 .
[13] Toby Ord,et al. Hypercomputation: computing more than the Turing machine , 2002, ArXiv.
[14] H. E. Rose. Subrecursion: Functions and Hierarchies , 1984 .
[15] William Thomson. IV. On an instrument for calculating (∫φ(x) ψ (x)dx), the integral of the product of two given functions , 1876, Proceedings of the Royal Society of London.
[16] Jerzy Mycka. Infinite limits and R-recursive functions , 2003, Acta Cybern..
[17] Pekka Orponen,et al. A Survey of Continous-Time Computation Theory , 1997, Advances in Algorithms, Languages, and Complexity.
[18] V. Arnold,et al. Ordinary Differential Equations , 1973 .
[19] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[20] Olivier Bournez. Achilles and the Tortoise Climbing up the Hyper-Arithmetical Hierarchy , 1999, Theor. Comput. Sci..
[21] José Félix Costa,et al. Analog computers and recursive functions over the reals , 2003, J. Complex..
[22] Thomas A. Henzinger,et al. Robust Undecidability of Timed and Hybrid Systems , 2000, HSCC.
[23] Hava T. Siegelmann,et al. Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.
[24] Mark D. Bowles,et al. U.S. Technological Enthusiasm and British Technological Skepticism in the Age of the Analog Brain , 1996, IEEE Ann. Hist. Comput..
[25] Cristopher Moore,et al. Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..
[26] Qing Zhou. Subclasses of computable real valued functions , 1997 .
[27] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[28] Olivier Bournez. Complexite algorithmique des systemes dynamiques continus et hybrides , 1999 .
[29] Ahmed Bouajjani,et al. Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[30] L. Rubel,et al. A differentially algebraic replacement theorem, and analog computability , 1987 .