A minimal communication approach to parallel time integration
暂无分享,去创建一个
[1] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[2] M. Hochbruck,et al. Exponential Runge--Kutta methods for parabolic problems , 2005 .
[4] Charbel Farhat,et al. Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .
[5] Jürg Nievergelt,et al. Parallel methods for integrating ordinary differential equations , 1964, CACM.
[6] Colin B. Macdonald,et al. Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..
[7] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[8] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[9] Yvon Maday,et al. A parareal in time iterative solver: a further direction to parallel implementation. Domain decomposition methods in science and engineering , 2005 .
[10] Yvon Maday,et al. The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation , 2005 .
[11] Vu Thai Luan,et al. Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..
[12] Marc Massot,et al. Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies , 2011 .
[13] Martin J. Gander,et al. Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .
[14] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[15] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[16] Charbel Farhat,et al. Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .
[17] Martin J. Gander,et al. Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .
[18] Ivan P. Gavrilyuk,et al. Exponentially Convergent Algorithms for the Operator Exponential with Applications to Inhomogeneous Problems in Banach Spaces , 2005, SIAM J. Numer. Anal..
[19] Martin J. Gander,et al. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..
[20] Michael L. Minion,et al. A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .
[21] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[22] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[23] Jianwei Hu,et al. Modified propagators of parareal in time algorithm and application to Princeton Ocean model , 2008 .
[24] M. Gander,et al. Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations , 2007 .
[25] Dongwoo Sheen,et al. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .