Computation of a Few Small Eigenvalues of a Large Matrix with Application to Liquid Crystal Modeling

Equilibrium configurations of liquid crystals in a finite containment are minimizers of the thermodynamic free energy of the system. It is important to be able to track an equilibrium configuration as the temperature of the liquid crystals is decreased. The path of the minimal energy configuration at a bifurcation point can be computed from the null space of a sparse symmetric matrix, which typically is very large, e.g., of order 3 × 105. We describe an implicitly restarted block Lanczos method designed for the computation of a few extreme multiple or close eigenvalues and associated eigenvectors of a large sparse symmetric matrix and apply this method to determine the desired null space. Our method generalizes the implicitly restarted Lanczos method introduced by Sorensen. The method requires that certain acceleration parameters, referred to as shifts, be chosen. The storage requirement depends on the choice of shifts. We propose a new strategy for choosing shifts. Numerical examples illustrate that the implicitly restarted block Lanczos method with shifts chosen in this manner gives rapid convergence, reliably detects extreme multiple or close eigenvalues, and requires little computer storage in addition to the storage used for the desired eigenvectors. These features make the method well suited for the application of tracking an equilibrium configuration of liquid crystals.

[1]  D. A. Flanders,et al.  Numerical Determination of Fundamental Modes , 1950 .

[2]  F. Leja Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .

[3]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[4]  P. Sheng,et al.  Introduction to Liquid Crystals , 1976 .

[5]  Axel Ruhe Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .

[6]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[7]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[8]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[9]  James Demmel,et al.  On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..

[10]  Lothar Reichel,et al.  Algorithm 686: FORTRAN subroutines for updating the QR decomposition , 1990, TOMS.

[11]  E. Allgower,et al.  Conjugate gradient methods for continuation problems II , 1991 .

[12]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[13]  E. Davidson,et al.  Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .

[14]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[15]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[16]  D. Calvetti,et al.  AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .

[17]  Å. Björck Numerics of Gram-Schmidt orthogonalization , 1994 .

[18]  R. Lehoucq Analysis and implementation of an implicitly restarted Arnoldi iteration , 1996 .

[19]  D. Calvetti,et al.  Iterative methods for the computation of a few eigenvalues of a large symmetric matrix , 1996 .

[20]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[21]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[22]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[23]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .