The balancing Choquet integral

In this paper a new extension of Choquet integral to real inputs is introduced. While the symmetric and the asymmetric Choquet integrals aggregate positive and negative inputs separately, the balancing Choquet integral merges both positive and negative inputs and thus allows the compensation effect for oppositely oriented inputs with the same magnitude.

[1]  Didier Dubois,et al.  On the Qualitative Comparison of Decisions Having Positive and Negative Features , 2008, J. Artif. Intell. Res..

[2]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .

[3]  G. Choquet Theory of capacities , 1954 .

[4]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[5]  Michel Grabisch,et al.  The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..

[6]  Yi-Chung Hu,et al.  Evaluating classification performances of single-layer perceptron with a Choquet fuzzy integral-based neuron , 2009, Expert Syst. Appl..

[7]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.

[8]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[9]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[10]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[11]  Paul C. Rhodes,et al.  Essentials of Fuzzy Modelling and Control , 1995 .

[12]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[13]  Michel Grabisch,et al.  Bipolar and bivariate models in multicriteria decision analysis: Descriptive and constructive approaches , 2008, Int. J. Intell. Syst..

[14]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[15]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[16]  Pero Subasic,et al.  Affect analysis of text using fuzzy semantic typing , 2001, IEEE Trans. Fuzzy Syst..

[17]  Michel Grabisch,et al.  The Quest For Rings On Bipolar Scales , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[19]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[20]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[21]  Didier Dubois,et al.  Qualitative Heuristics For Balancing the Pros and Cons , 2008 .

[22]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[23]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[25]  D. Denneberg Non-additive measure and integral , 1994 .

[26]  M. Sugeno,et al.  An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy , 1989 .

[27]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[28]  M. Grabisch,et al.  Bi-capacities for decision making on bipolar scales , 2002 .

[29]  E. Pap Null-Additive Set Functions , 1995 .

[30]  Janyce Wiebe,et al.  Computing Attitude and Affect in Text: Theory and Applications , 2005, The Information Retrieval Series.

[31]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[32]  Bernard De Baets,et al.  Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof , 1999, Fuzzy Sets Syst..

[33]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .