Measurability of semimartingale characteristics with respect to the probability law

Given a cadlag process X on a filtered measurable space, we construct a version of its semimartingale characteristics which is measurable with respect to the underlying probability law. More precisely, let Psem be the set of all probability measures P under which X is a semimartingale. We construct processes (BP,C,νP) which are jointly measurable in time, space, and the probability law P, and are versions of the semimartingale characteristics of X under P for each P∈Psem. This result gives a general and unifying answer to measurability questions that arise in the context of quasi-sure analysis and stochastic control under the weak formulation.

[1]  Gordan Zitkovic,et al.  Dynamic Programming for Controlled Markov Families: Abstractly and over Martingale Measures , 2013, SIAM J. Control. Optim..

[2]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[3]  Marcel Nutz,et al.  Superreplication under Volatility Uncertainty for Measurable Claims , 2012, 1208.6486.

[4]  Mihai Sîrbu,et al.  Stochastic Perron's Method and Elementary Strategies for Zero-Sum Differential Games , 2013, SIAM J. Control. Optim..

[5]  Jianfeng Zhang,et al.  Two Person Zero-Sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation , 2012, SIAM J. Control. Optim..

[6]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[7]  R. Karandikar On pathwise stochastic integration , 1995 .

[8]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[9]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[10]  F. Lowenstein Capacities , 1916, Proceedings of the Institute of Radio Engineers.

[11]  M. Beiglböck,et al.  A short proof of the Doob–Meyer theorem , 2010, Stochastic processes and their applications.

[12]  K. Bichteler,et al.  Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .

[13]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.

[14]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[15]  Marcel Nutz,et al.  A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations , 2011, ArXiv.

[16]  Walter Schachermayer,et al.  A direct proof of the Bichteler-Dellacherie Theorem and connections to arbitrage , 2010, 1004.5559.

[17]  Marco Pavone,et al.  Stochastic Optimal Control , 2015 .

[18]  Marcel Nutz,et al.  Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010, SIAM J. Control. Optim..

[19]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[20]  S. Peng Backward Stochastic Differential Equation, Nonlinear Expectation and Their Applications , 2011 .

[21]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[22]  J. K. Hunter,et al.  Measure Theory , 2007 .

[23]  Marcel Nutz,et al.  Nonlinear L\'evy Processes and their Characteristics , 2014, 1401.7253.

[24]  D. Sworder Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[25]  Marcel Nutz,et al.  Optimal stopping under adverse nonlinear expectation and related games , 2012, 1212.2140.

[26]  R. Handel,et al.  Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.

[27]  N. Touzi,et al.  On the Robust superhedging of measurable claims , 2013, 1302.1850.

[28]  S Mihai,et al.  STOCHASTIC PERRON'S METHOD AND ELEMENTARY STRATEGIES FOR ZERO-SUM DIFFERENTIAL GAMES ∗ , 2014 .

[29]  Xiaolu Tan,et al.  Capacities, Measurable Selection and Dynamic Programming Part I: Abstract Framework , 2013, 1310.3363.

[30]  C. Dellacherie Quelques applications du lemme de borel-cantelli a la theorie des semimartingales , 1978 .

[31]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[32]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[33]  N. Karoui,et al.  Backward Stochastic Differential Equations , 1997 .