Recognizing even-cycle and even-cut matroids

Even-cycle matroids are elementary lifts of graphic matroids. Even-cut matroids are elementary lifts of cographic matroids. We give a polynomial time algorithm to check if a binary matroid is an even-cycle matroid. We also give a polynomial time algorithm to check if a binary matroid is an even-cut matroid. These algorithms rely on structural properties of the class of pinch-graphic matroids.

[1]  Charles Semple,et al.  The structure of the 3-separations of 3-connected matroids , 2004, J. Comb. Theory, Ser. B.

[2]  Thomas Zaslavsky,et al.  Biased graphs. II. The three matroids , 1991, J. Comb. Theory, Ser. B.

[3]  Irene Pivotto,et al.  Even Cycle and Even Cut Matroids , 2011 .

[4]  James G. Oxley,et al.  Matroid theory , 1992 .

[5]  H. Whitney 2-Isomorphic Graphs , 1933 .

[6]  Geoff Whittle,et al.  Bridging Separations in Matroids , 2005, SIAM J. Discret. Math..

[7]  W. T. Tutte An algorithm for determining whether a given binary matroid is graphic. , 1960 .

[8]  Manoel Lemos,et al.  On the minor-minimal 3-connected matroids having a fixed minor , 2003, Eur. J. Comb..

[9]  Alan J. Hoffman,et al.  SOME RECENT APPLICATIONS OF THE THEORY OF LINEAR INEQUALITIES TO EXTREMAL COMBINATORIAL ANALYSIS , 2003 .

[10]  Paul D. Seymour,et al.  Recognizing graphic matroids , 1981 .

[11]  F. Harary On the notion of balance of a signed graph. , 1953 .

[12]  W. T. Tutte Connectivity in Matroids , 1966, Canadian Journal of Mathematics.

[13]  Bert Gerards,et al.  On Tutt's Characterization of graphic matroids - a graphic proof , 1995, J. Graph Theory.

[14]  W. T. Tutte Lectures on matroids , 1965 .

[15]  Paul Wollan,et al.  Stabilizer theorems for even cycle matroids , 2016, J. Comb. Theory, Ser. B.

[16]  J. Geelen,et al.  TOWARDS A MATROID-MINOR STRUCTURE THEORY , 2007 .

[17]  Bert Gerards,et al.  The Excluded Minors for GF(4)-Representable Matroids , 1997, J. Comb. Theory, Ser. B.

[18]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[19]  W. T. Tutte Matroids and graphs , 1959 .

[20]  Paul D. Seymour,et al.  A note on the production of matroid minors , 1977, J. Comb. Theory, Ser. B.

[21]  P. Seymour On Tutte's Characterization of Graphic Matroids , 1980 .

[22]  Xiangqian Zhou,et al.  A Splitter Theorem for Internally 4-Connected Binary Matroids , 2006, SIAM J. Discret. Math..

[23]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.