iDEVS: New method to study inaccurate systems

Our recent research in the fields of modeling and simulation of complex systems, led us to study fuzzy systems. A system is fuzzy, because its parameters are inaccurate, or its behavior is uncertain. We propose in this paper to describe a new modeling method based on the association of DEVS formalism and the fuzzy sets theory. The combination of these two approaches we have permit to define a new method of inaccurate modeling. Our goal is to study systems with inaccurate parameters.

[1]  Wan Kwon,et al.  Fuzzy-DEVS Formalism : Concepts , Realization and ApplicationsYi , 2007 .

[2]  E. de Gentili,et al.  Discrete events system simulation-based deFuzzification method , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[3]  Didier Dubois,et al.  A generalized vertex method for computing with fuzzy intervals , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[4]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[5]  Lucien Duckstein,et al.  Comparison of fuzzy numbers using a fuzzy distance measure , 2002, Fuzzy Sets Syst..

[6]  Paul-Antoine Bisgambiglia,et al.  DEVS-Flou: a discrete events and fuzzy logic-based new method of modelling , 2006 .

[7]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 2: logical approaches , 1991 .

[8]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[9]  Jean François Santucci,et al.  Fuzzy simulation for discrete events systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[10]  H. Vangheluwe The Discrete EVent System specification ( DEVS ) formalism CS 522 Fall Term 2001 , 2022 .

[11]  Lazaros S. Iliadis,et al.  A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation , 2005, Environ. Model. Softw..

[12]  Paul-Antoine Bisgambiglia,et al.  Fuzz-iDEVS: towards a fuzzy toolbox for discrete event systems , 2009, SIMUTools 2009.

[13]  Laurent Capocchi,et al.  Manipulation of incomplete or fuzzy data for DEVS-based systems , 2007 .

[14]  B. P. Ziegler,et al.  Theory of Modeling and Simulation , 1976 .

[15]  Bernard P. Zeigler,et al.  Theory of modeling and simulation , 1976 .

[16]  F. Barros Dynamic structure discrete event system specification: a new formalism for dynamic structure modeling and simulation , 1995, Winter Simulation Conference Proceedings, 1995..

[17]  Quirico Semeraro,et al.  A new algorithm to rank temporal fuzzy sets in fuzzy discrete event simulation , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[18]  Gabriel A. Wainer,et al.  Implementing parallel Cell-DEVS , 2003, 36th Annual Simulation Symposium, 2003..

[19]  Doheon Lee,et al.  Ranking the sequences of fuzzy values , 2004, Inf. Sci..

[20]  E. De Gentili,et al.  A fuzzy approach of modeling evolutionary interfaces systems , 2006, 2006 First International Symposium on Environment Identities and Mediterranean Area.